
Gómez-Escalonilla, V., Heredia, J., Martínez-Santos, P., López-Gutiérrez, J., and De la Hera-Portillo, A.: Modelling Regional Effects of Artificial Groundwater Recharge in a Multilayer Aquifer Characterized by Perched Water Tables. Hydrological Processes 38 (2), p. e15085., https://doi.org/10.1002/hyp.15085, 2024.
Hsu, S.-C., de Lavenne, A., Andréassian, V., Rabah, A., and Ramos, M.-H.: Better mapping of groundwater-surface water exchanges over the Seine River catchment in a surface hydrological model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15833, https://doi.org/10.5194/egusphere-egu24-15833, 2024.
Gómez-Escalonilla, V., Martínez-Santos, P., Pacios, D., Ruíz-Álvarez, L., Díaz-Alcaide, S., Montero-González, E., Martín-Loeches, M., and De la Hera-Portillo, Á.: Nitrate spatial predictions by means of machine learning to improve groundwater monitoring networks, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10066, https://doi.org/10.5194/egusphere-egu24-10066, 2024.
Gómez-Escalonilla, V., Martínez-Santos, P., De la Hera-Portillo, A., Díaz-Alcaide, S., Montero, E., and Martín-Loeches, M.: A machine learning application for the development of groundwater vulnerability studies, HIC2024, Beijing, China, 27-30 May 2024, https://doi.org/10.3850/iahr-hic2483430201-378, 2024.
Gómez-Escalonilla, V., Martínez-Santos, P., Díaz-Alcaide, S., Montero, E., and Martín-Loeches, M.: GIS-Based Machine Learning Applications as Decision Support Systems to Enhance Groundwater Monitoring Networks, HIC2024, Beijing, China, 27-30 May 2024, https://doi.org/10.3850/iahr-hic2483430201-3, 2024.
Martinez-Santos, P., Gómez-Escalonilla, V., Díaz-Alcaide, S., Rodríguez del Rosario, M., and Héctor, A.: A Surrogate Approach to Model Groundwater Level in Time and Space Based on Tree Regressors, SSRN, http://dx.doi.org/10.2139/ssrn.4890332, 2024.
Miaari, S., and Kollet, S. J.: Temporal Scaling Laws for Wetting and Drying in Variably Saturated Soils, AGU 2024, 9-13 December 2024, Washington D.C., https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1612443, 2024.
Avila, L., Kollet, S., de Lavenne, A., and Ramos, M.-H.: Integrating GRACE and ERA5-Land with simulations to estimate monthly groundwater table depth anomalies based on Random Forest and LSTM networks over the Seine River Basin, AGU 2024, 9-13 December 2024, Washington D.C., https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1610809, 2024.
Avila, L., de Lavenne, A., Ramos, M.-H., and Kollet, S.: Estimation of Monthly Water Table Depth Anomalies Based on the Integration of GRACE and ERA5-Land with Large-Scale Simulations Using Random Forest and LSTM Networks, Water Resour. Manage., https://doi.org/10.1007/s11269-025-04097-7, 2025.
Hsu, S. C., de Lavenne, A., Perrin, C., and Andréassian, V.: Extra constraint on actual evaporation in a semi-distributed conceptual model to improve model physical realism, Hydrological Sciences Journal, 1–14. https://doi.org/10.1080/02626667.2025.2468846, 2025.
Purnamasari, D., Teuling, A. J., and Weerts, A. H.: Identifying irrigated areas using land surface temperature and hydrological modelling: application to the Rhine basin, Hydrol. Earth Syst. Sci., 29, 1483–1503, https://doi.org/10.5194/hess-29-1483-2025, 2025.
Purnamasari, D., van Verseveld, W., Buitink, J., Sperna Weiland, F., Dalmijn, B., Teuling, A., and Weerts, A.: Implications of incorporating anthropogenic water use in the hydrological model simulations of the Rhine basin, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15753, https://doi.org/10.5194/egusphere-egu25-15753, 2025.
Collignan, J., Ramos, M.-H., de Lavenne, A., Barbé, C., and Riboust, P.: Assessing water management vulnerability under future climate scenarios: the case of the reservoirs in the Seine River basin, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-8618, https://doi.org/10.5194/egusphere-egu25-8618, 2025.
Engeland, K., Gelati, E., Hegdahl, T. J., Huang, S., and Veie, C. A.: Climate change impacts on reservoir operations and water availability – a case study from Drammen river basin in Norway , EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15110, https://doi.org/10.5194/egusphere-egu25-15110, 2025.
Graf, T., Glas, M., Monji, F., Klösch, M., Preiml, M., ter Maat, J., Toma, A., Scrieciu, A., and Habersack, H.: RIBASIM Danube: Modeling water allocation in the Danube Basin with a focus on low-flow conditions, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-6640, https://doi.org/10.5194/egusphere-egu25-6640, 2025.
Scrieciu, A. and Toma, A.: Monitoring Long-Term Land Cover Transformations in the Danube Delta using Landsat Satellite Imagery, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-16549, https://doi.org/10.5194/egusphere-egu25-16549, 2025.
STARS4Water aims to improve the understanding of climate change impacts on water resources availability and the vulnerabilities for ecosystems, society and the economy at river basin scale
This project has received funding from the European Union’s HORIZON
Research and Innovation Actions Programme under Grant Agreement No. 101059372