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Summary 
 

This report describes the data-driven modelling tools which have been developed to help address the 

needs of the 7 STARS4Water river basin hubs, as detailed in report D1.2. In this work, data-driven 

methods have been used to leverage the increasing volumes of hydrological, environmental, and 

socio-economic data available to provide valuable information on available water resources and 

related topics. These methods are well suited to solve these complex problems, since they are able to 

capture non-linear patterns while assuming no prior knowledge, and can do so in a computationally 

efficient manner. Thus, these tools perfectly complement the development of existing processed-

based modelling tools and frameworks detailed in report D3.2.  

These data-driven tools were proposed and selected in a series of workshops with the project team, 

based on the requirements of the stakeholders and modelling gaps identified in report D3.1, and 

consist of: 

- Prediction of reservoir storage and inflows; 

- Total water storage downscaling; 

- Agricultural water use; 

- Predictive mapping of groundwater quality; 

- Quantitative groundwater resources estimation. 

These tools cover a range of water resource related issues including: the estimation and forecasting 

of key water sources such as reservoir and groundwater stores at a range of spatial and temporal 

scales; spatial prediction of groundwater contamination; and estimation of irrigated area. 

This report details the modelling tools developed in this work package and analyses their application 

over selected catchments within the river basin hubs. Promising results are demonstrated for these 

tools in the selected basins, and with continued collaboration with the basin stakeholders have the 

potential to be deployed operationally to aid water management decisions. 

Each tool also has the capacity to be extended to other regions; this will be further explored in future 

work within the STARS4Water project (Task 4.4).
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1 Introduction 
 

1.1 STARS4Water project 
 

STARS4Water (Supporting Stakeholders for Adaptive, Resilient and Sustainable Water management) 

is a 4 year research project under the Horizon Europe Program. The project is addressing a call on 

improved understanding, observation and monitoring of water resources availability to support the 

European Green Deal and EU water policies. The project aims to:  

• improve the understanding of climate change impacts on water resources availability and the 

vulnerabilities for ecosystems, society, and economic sectors at river basin scale 

• develop and deliver new data services and data driven models for better supporting the decision 

making and planning on actions for adaptive, resilient and sustainable management of freshwater 

resources. 
 

The STARS4Water project includes two distinctive elements, depicted in Figure 1. Firstly, the project 

team works with 7 river basin hubs (RBHs) through a co-creation, living lab-type approach. The 

location of the selected RBHs is presented in Figure 2. The new services and models are co-designed 

with stakeholders to meet their needs on data and information, ensuring relevance and uptake 

beyond the lifetime of the project. Secondly, the team advances the use of new datasets and models 

and integrates these into current river basin management information tools and decision-making 

processes. New datasets and models offer possibilities for improved projections on water resources 

availability, and new insights on the links between water, nature and society allow for a broader set 

of indicators to inform decision-making on water management. The consortium strongly believe that 

this combination of stakeholder-driven and science-driven approaches will yield significant progress 

in climate change adaptation with respect to water resources management. 

  

 
Figure 1. Overview of STARS4Water activities within the context of stakeholders and data providers. 
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Figure 2. Overview of the seven river basin hubs of the STARS4Water project and the main sectors impacted by 

changes in water resources availability due to changing climate and socio-economic developments. 

  

1.2 Work Package 3 
 

STARS4Water Work Package 3 (WP3) is dedicated to the comparison, evaluation and further 

development of models for water resources management, which are key tools used to support 

decision making on water resources management all around the world. The objectives of this work 

package, entitled “Developing next generation models”, are to:   

 

• compare and evaluate existing models used operationally within the 7 RBHs and explore options 

for improving their accuracy and spatial resolution to meet stakeholder needs; 

• test how innovative, multi-scale model integration and data-driven techniques could enhance 

water resources management.  
 

The main activities in this work package are:   

• benchmarking existing models against stakeholder requirements (Task 3.1);  

• improving existing models based on new process understanding (Task 3.2); 

• improving existing models based on multi-scale model integration (Task 3.3); 

• developing data-driven water resources tools for selected river basins (Task 3.4). 

  

The activities within this work package range across different themes related to water resources 

including groundwater, water quality, environmental flows and water demand. These themes were 

decided based on the stakeholder needs, which were gathered across the 7 RBHs via a series of local 

workshops and presented in report D1.2, “Assessment of the needs on data services and modelling 

tools of stakeholders in selected European river basins”.  
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1.3 This report – D3.4  
 

This report presents the data-driven modelling tools which have been developed in Task 3.4. This work 

has drawn on report D3.1: Gap analysis of existing modelling tools in the STARS4Water river basins, 

which details the models currently in use across the RBHs and, by comparing against stakeholder 

modelling requirements, identifies any modelling gaps or challenges which can be addressed in tasks 

3.2, 3.3, or 3.4. In a series of workshops with the project team, a set of data-driven modelling tools 

were proposed based on the identified modelling gaps, as follows: 

 

• Predicting reservoir storage and inflows: to address the need for better quantitative 

assessments of water resources, and to support decision making for reservoir operation and 

water resources management. 

• Total water storage downscaling: downscaling satellite observations of total water storage to 

estimate monthly water table depth. 

• Agricultural water use: to assess the impacts of climate change on agricultural water demand.  

• Predictive mapping of groundwater quality: to address groundwater quality concerns in the 

RBHs.  

• Quantitative groundwater resources estimation: to refine the estimation of groundwater 

resources, supporting water resources management and improving understanding of 

groundwater impacts on droughts and low flows. 

In this report, each of these tools is described, and results of their application over selected RBHs are 

presented and discussed (full descriptions of each RBH can be found in report D1.1). A final section 

draws conclusions on these tools, reflecting on how they have met the stakeholder needs and the 

future potential for their wider application. 

 

Data-driven Tools and Machine Learning 

In recent decades, the unprecedented levels of accessible data and computational power has led to 

an explosion of applications of data-driven and Machine Learning (ML) models across almost all areas, 

including that of hydrology and water resources. There are many user-friendly generic and hydrology-

specific ML packages available, reducing the barriers to application of ML for these purposes. Data-

driven tools leverage the increasing volumes of data to: enhance existing models through hybrid 

approaches, data assimilation, and emulators; provide insights into system processes through feature 

importance and other explainable ML techniques; and add to our modelling capabilities through the 

development of ML models. Data-driven models have the benefit of assuming no prior knowledge as 

they learn patterns from the data provided, and they have the potential to capture non-linear 

relationships in the data which makes them well suited to modelling complex systems. Expert 

knowledge is then applied to refine and validate the model since, much like statistical methods, it is 

easy to produce misleading results if models are applied without care. Analogously to statistical 

methods, one key limitation to data-driven models is that they are generally not robust when applied 

outside the domain that they were trained on. 

Each of the ML models described in this report are examples of supervised learning models, that is, 

they each see a set of explanatory variables with accompanying target variable(s) that they use to 

“learn” the relationship between the explanatory and target variable(s). This learning is then tested 

on a section of the data that has previously been withheld, to assess whether the model can accurately 

predict unseen target variables. A range of different ML models are explored in this work, including 
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tree-based models such as Random Forest and related algorithms, and neural-network type models 

such as Long Short-Term Memory (LSTM) and related algorithms. A brief summary of each of the 

modelling tools is provided in Table 1. 

Table 1.  An overview of the data-driven tools applied in this work alongside the river basin hub (RBH) they were 

developed/applied in. 

Aim 
Applied 
Models 

Timestep & 
Prediction 
Horizon 

Spatial 
Resolution & 
Extent RBH 

Input 
Data Type 

Validation 
Data Type 

Reservoir inflow and 
storage prediction LSTM 

Daily; 
1 day ahead 

point; 
multi-reservoir  

Duero; 
Seine 

in-situ; 
global1  in-situ  

Reservoir storage 
forecasting 

Ensemble-
tree 

Monthly; 
1-3 months 
ahead 

point; 
multi-reservoir  

Duero; 
East Anglia 

in-situ; 
global1  in-situ  

Downscaling water 
table depth 
anomalies RF; LSTM 

Monthly; 
n/a 

9 km; 
basin Seine 

satellite; 
reanalysis; 
simulated 

simulated; 
in-situ  

Irrigated area 
prediction RF 

Annual; 
n/a 

1 km; 
basin Rhine satellite  

in-situ 
(survey 
statistics) 

Groundwater spatial 
contamination 
prediction  

Ensemble-
tree n/a; n/a 

~km; 
basin/aquifer 

Duero; 
East Anglia spatial2 in-situ 

Groundwater storage 
change prediction 

STT; 
XGBoost 

Monthly; 1 
month  11 km; basin Duero spatial2 

simulated; 
in-situ 

1. global catchment-level data, e.g. meteorological data and static catchment characteristics 
2. spatial datasets, such as lithology, land-use and rainfall, which have been produced using a range of methods 
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2 Predicting reservoir storage and inflows 
 

2.1 Introduction 
 

Surface reservoirs are a major source of water for human use, and it is important to have a reliable 

forecast for reservoir status to ensure efficient operation of individual reservoirs and the wider water 

resource system (Peñuela et al., 2020; Ahmad & Hossain, 2019). This is a current and vital issue for 

many regions worldwide and will become increasingly important under changing climate and growing 

demand for water and hydropower (Gleick et al., 2013; Gleick, 2003). Surface water reservoirs have 

been identified as a modelling priority in four of the seven STARS4Water RBHs: Drammen, Duero, 

Messara, and Seine. 

Given the importance of reservoirs in water resources, there has been a lot of research on predicting 

reservoir status at different lead-times and with different methods at a range of scales. Our interest is 

in data-driven methods, which have become popular as an alternative to hydrological models for 

forecasting. Data-driven methods have been used to forecast reservoir levels (Ibañez et al., 2021; 

Sapitang et al., 2020) which can be used to estimate reservoir storage or as a proxy for storage, and 

to forecast reservoir inflow (Yang et al., 2017; Hong et al., 2020), reservoir outflow (Yang et al., 2016), 

and reservoir storage anomalies (Tiwari & Mishra, 2019).  

Basin stakeholders have highlighted the need for better quantitative assessments of water resources, 

and of the water stored in reservoirs. A modelling tool for both the monitoring and forecast of 

reservoir storage/levels was therefore put forward as high priority for the Duero, Messara and Seine 

basins, with the aim that such an approach could provide improved representation of reservoirs and 

operations, and as such aid the future planning of water allocation for the domestic, agricultural and 

energy sectors. 

Here two methods are explored for reservoir prediction at different scales: 

1. A Long Short-Term Memory (LSTM) model for simulation of reservoir inflow and storage at a 

daily timestep. 

2. Ensemble-tree models (i.e. Random Forest (RF)-type models) for reservoir storage at a 

monthly timestep, designed to produce seasonal to sub-seasonal forecasts. 

These methods differ both in their approach and their intended usage, but both address the need for 

improved quantification of water resources in reservoirs. An LSTM model at a daily timestep has the 

advantage of producing simulations for reservoir storage and inflow at a high temporal resolution. 

Therefore, the outputs are well suited to short-term decision making, with the added advantage of 

simulating reservoir inflow, which is useful information for water managers. Consequently however, 

this model has high data requirements which can be difficult to satisfy (i.e. historical daily timeseries 

of reservoir inflow and storage). In comparison, ensemble-tree models have lower data requirements, 

particularly since this application only requires historical reservoir storage at a monthly timestep. 

Thus, it is much easier to source data and to apply this model to multiple reservoirs. The ensemble-

tree method is designed to produce forecasts on a monthly timestep at 1-3 months ahead, so the 

outputs can support decision making at those timescales. The disadvantage of this method is that the 

forecasts are at a coarse timestep and do not include reservoir inflow. 
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2.2 Long Short-Term Memory (LSTM) models for reservoir inflow and storage 
 

One of the main challenges for establishing an LSTM-based model for reservoir inflow and storage 

predictions is the relatively low amount of available data. Hence, several approaches are explored 

for artificially enhancing the data, in addition to establishing a multi-task learning (MTL) approach for 

reservoir predictions (Figure 3). 

 

 

 

 

 

 

Figure 3. Workflow summary of the LSTM training. 

 

Data augmentation: in machine learning, data augmentation is used as an umbrella term for 

techniques that increase the dataset size by creating modified versions of the original data to improve 

the learning process. The most common approach uses invariants, where the data augmentation 

procedure modifies the inputs, and the model must predict the unchanged labels. For instance, when 

we are interested in classifying digits from an image, we can implement a form of data augmentation 

by rotating the images. For a given sample, say a 7, we might rotate the input image by a small amount 

and let the model predict that the corresponding label is still a 7. Some data augmentation techniques 

require an intimate knowledge of the application domain, while others are largely domain 

independent (and can thus in principle be applied to all kinds of tasks). Within STARS4Water, we are 

mainly interested in the latter since individual reservoir storages can be managed substantially 

differently. Specifically, we explore four approaches: (1) noise addition observations, (2) scaling of the 

observation, (3) CMixup (Yao et al., 2022), and (4) Moving Block Bootstrap (MBB). We explain each of 

these approaches in more detail in the methods section. 

Multi-task learning: in the machine learning domain, MTL refers to a set of approaches that involve 

training a model to perform multiple related tasks at the same time to improve generalization and 

efficiency for a task of interest. MTLs specifically utilise the LSTM architecture, which is well-suited for 

processing sequences of data with long-term dependencies as found in rainfall–runoff modelling. The 

resulting MTS-based LSTM is designed to learn from and predict multiple sequences of data 

simultaneously, each representing a different task (specifically: reservoir inflow and storage). This 

facilitates the exploration of regime change based on a ‘transfer’ of parameters between the different 

reservoirs. By doing this, there is potential to forecast reservoir storage for longer lead times, such as 

on seasonal scales. This approach might address some of the more fundamental drawbacks around 

ML approaches and their ability to forecast outside of the intrinsic boundaries of the input data. 
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Method 

Multi-task learning: daily reservoir inflow, outflow and volume observation data from the river basin 

hubs, along with meteorological inputs and socio-economic statistics from HydroAtlas (Linke et al., 

2019), are used to train an LSTM model to simulate naturalised streamflow and historic reservoir 

volumes. We use MTL for training an LSTM, i.e. the model is trained to simultaneously predict inflow 

and reservoir storage. However, the primary goal is reservoir storage, because it represents the 

component with limited data availability. The naturalised streamflow (which becomes the inflow to a 

given reservoir) serves as a secondary task. Henceforth, we refer to this as the MTL-based LSTM. 

The resulting MTL-based LSTM model is specifically designed to learn from and make predictions 

across multiple sequences of data simultaneously, with each sequence representing a distinct task. 

This allows the model to share knowledge between related tasks. In our case, these tasks are the 

estimation of (naturalised) reservoir inflow and the respective storage. Our current model uses 

Caravan, a global community dataset for large sample hydrology (Kratzert et al., 2023), for training. 

The dataset includes meteorological forcings data, static catchment attributes (e.g. geophysical, 

sociological, climatological), and streamflow data for more than 6830 catchments across the globe. 

We split the dataset into training and validation sets for model selection. To assess the potential of 

MTL-based LSTM, we evaluate the model on the time series of five case study reservoirs in the Duero 

basin (Camporredondo) and the Seine River basin (Marne, Seine, Aube, and Pannecière). We also 

performed two different experiments:  the first experiment without local inputs, which we named 

“simulation”; and the second experiment with local inputs (i.e., high quality input products from Great 

Britain), which we named “simulation (local products)”. 

Due to the high data demands of such an approach, fine-scale (<100 m) earth observation (EO) data 

from Planet (project partner) is also used to derive water surface area, and thereafter water 

level/volume, supplementing the data provided by the RBHs. Depending upon the results acquired 

from this initial model training, it is hoped to further explore the drivers of water use from different 

sectors, such as agriculture and energy. Initially, this would be done via proxies based on land use and 

energy prices, for example, and would again utilize EO data as provided by Planet and/or freely 

available EO data, where appropriate. More detail on this can be found in Appendix A: : Monitoring 

Embalsa Camporredondo using Planet Fusion.  

Data augmentation: for the augmentation experiment we compare four techniques:  

• Additive Noise: Gaussian noise is added to each timestep (with zero mean and two different 

standard deviations). The idea behind the input noise injection is that the modified inputs 

could generate new input patterns that mimic potential variations in the test data, therefore 

potentially making the model more robust to overfitting and able to handle real-world 

scenarios. In other words, the added noise introduces additional variability, which allows the 

model to learn from slightly altered versions of the same data points.  

• Scaling Noise: a multiplicative noise factor is applied to the whole input. Here, the noise-scalar 

is drawn from a Gaussian distribution with mean equal to one.  

• Moving Block Bootstrapping (MBB): new samples are generated by resampling yearly blocks 

of sequential data (with replacement) (Künsch, 1989). It divides the time series into blocks or 

segments of contiguous data points. MBB generates new samples that maintain the statistical 

properties and temporal dependencies of the original data, helping to create a more diverse 

dataset for training machine learning models.  
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• CMixup: it samples close pairs of examples with higher probability and linearly interpolate 

based on label similarity. Details of the approach can be found in Yao et al. (2022). 

We train and validate an LSTM for each augmentation technique and for each combination of 

parameters. All LSTMs have a hidden size of 256 (that is, the number of state that the model uses at 

each time step is 256) and a linear layer with a Relu (Rectified Linear Unit) activation function on top 

of it. We chose a dropout rate of 0.4 and Mean Squared Error (MSE) as a loss function. The learning 

rate for ADAM (an adaptive optimization algorithm (Kingma & Ba, 2017)) is 0.003 on the first 10 epochs 

(where an epoch is defined as one complete pass through the entire training dataset by the neural 

network during training), then 0.0005 from the 11th–15th epoch, and 0.0001 for the remaining 5 

epochs. Our baseline is the LSTM trained on the original dataset, then compared against the models 

where we incorporate augmentation techniques.  

We also experiment with the addition of local weather products in Great Britain. Specifically, the 

addition of high-quality input products from the CAMELS GB dataset. This addition is of scientific 

interest. The input has no direct influence of the predictability on the hydrological predictions in 

France and Spain. However, the conjecture is that high quality inputs for some parts of the data could 

have the potential to nudge the model to learn representations that generalise better.  

 

Results and Discussion 

Multi-task learning: the MTL-based LSTM is evaluated on the time series of the five case study 

reservoirs. We use the following evaluation metrics (table 2): 

i) the Nash-Sutcliffe Efficiency (NSE), which measures the magnitude of the residual variance 

with respect to the variance of the observed values,  

ii) the Kling-Gupta Efficiency (KGE), which computes the Euclidean distance between the 

relative variances, the bias and Pearson’s correlation coefficient, and  

iii) the Pearson’s correlation coefficient (r), which measures the linear relationship between 

the observed and the predicted values.  

 
Table 2. Evaluation for a Multitask Learning based Long Short-Term Memory model (MTL-LSTM) simulating 

daily reservoir inflow and volume, using Nash-Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (r) and 

Kling-Gupta efficiency (KGE). Comparison between the model trained with global input products and the model 

trained with global and local meteorological forcings from Great Britain (GB) in conjunction. The values in bold 

are the best performance. 

                           
Reservoir 

MTL-LSTM (global) MTL-LSTM (global and GB) 

        NSE            r         KGE        NSE            r         KGE 

Inflow volume Inflow volume Inflow volume Inflow volume Inflow volume Inflow volume 

Pannecière 0.577 0.832 0.854 0.98 0.704 0.835 0.569 0.579 0.834 0.932 0.738 0.734 

Marne 0.694 0.942 0.852 0.974 0.636 0.903 0.721 0.926 0.85 0.964 0.764 0.913 

Seine 0.794 0.952 0.902 0.981 0.737 0.883 0.81 0.949 0.901 0.976 0.834 0.916 

Aube 0.506 0.97 0.718 0.99 0.668 0.946 0.606 0.969 0.781 0.990 0.73 0.942 

Camporredondo 0.807 -2.306 0.899 0.397 0.842 -0.114 0.790 -5.302 0.918 0.235 0.693 -0.196 
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The closer to 1 the values of NSE, KGE and r are the better the model. The results show that the LSTM 

can in general model both inflow and volume relatively well. The exception is the Camporredondo 

reservoir, where the modelling of the reservoir failed. Our hypothesis here is that the LSTM would 

require additional information to model the reservoir behaviour more accurately. The high metrics for 

the reservoir volume simulation are explained by the high seasonality of the volume. In practice, it 

remains difficult to capture details about systemic behaviour of reservoirs. The LSTM captures some 

large-scale processes, but remains unable to model long-term strategies (e.g., when reservoir 

operators strategically withhold water earlier in the year to release it at some later stage). 

 

The addition of the “local products” (i.e., high quality input products from Great Britain) exhibits mixed 

results. Interestingly, the inflow simulations seem to generally improve under the local product 

addition. This can be seen as an indication that our conjecture that high quality inputs enabling the 

learning of better representations might hold. However, the improvement seems to be very specific 

and does not generalize to the volume estimations.  

 

Figure 4 and Figure 5 show the hydrographs of daily inflow and storage observations compared with 

the simulations. The model performs well on each reservoir for the inflow and the storage 

(0.56 < NSE < 0.81, 0.83 < r < 0.91), except the storage for the Camporredondo which provides the 

worst performance (NSE = -2.31, r = 0.40).  

 

Data augmentation: for data augmentation, we find that when training the model on a low number 

of basins most augmentation approaches exhibit good performance across all evaluated metrics ( 

Table 3). The exception here is CMixup, which exhibits a lower prediction performance than the 

baseline. The best techniques we found are Scaling and MBB. However, the evaluation of the model 

trained on the 12187 basins (i.e., Caravan and GRDC-Caravan) shows marginal improvements over the 

baseline. This can also be seen from the associated distribution of the NSE values. 

While all approaches, except for CMixup, lead to statistically significant performance increases, the 

increases are rather small from a hydrological standpoint. We assess the statistical significance (p) 

using the two-sided Wilcoxon (paired) signed-rank test, we also compute and report the 

corresponding effect sizes (using Cohen's d), and find the best performing approaches are Scaling 

Noise (d=0.005, p=2e-6) and MBB (d=0.051, p=2.6e-3). In summary, we found that none of the methods 

provide a strong basis for artificially augmenting the data. We repeated the experiment using CAMELS-

US (Addor et al., 2017) (not shown here), and the results yielded a similar pattern 
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Figure 4. Hydrograph of daily inflow (left) and storage observations (right) compared with their simulations for 

the Pannecière, Marne, Aube, and Seine reservoirs. The simulations with the “local products” refer to the addition 

of high-quality data from Great Britain as inputs for model training.  
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Figure 5. Hydrograph of daily inflow (left) and storage observations (right) compared with their simulations for 

the Camporredondo basin. The simulations with the “local products” refer to the addition of high-quality data 

from Great Britain as inputs for model training. 
 

Table 3. Comparisons of the evaluation metrics (Nash-Sutcliffe efficiency (NSE), Kling-Gupta Efficiency (KGE), 

Pearson’s correlation coefficient (r)) between the baseline model and the data augmentation approaches using 

the inflow. Here, Noise means additive noise, scaling means multiplicative noise, CMixup is a mixing variant for 

continuous data and MBB stands for moving block bootstrapping (see methods). The model is trained and 

evaluated on 10, 50, and 100 basins. Statistics are averaged over different runs. Performances that are better 

than the Baseline are marked in bold and the best overall value in violet. 

Metrics Aggregation Baseline 
Noise 
(std=0.03) 

Noise 
(std=0.2) Scaling CMixup MBB 

10 basins 

NSE 
Median 0.727±0.01 0.749±0.005 0.75±0.003 0.737±0.013 0.694±0.009 0.737±0.015 

Mean 0.66±0.007 0.667±0.008 0.67±0.002 0.662±0.008 0.618±0.007 0.662±0.012 

R 
Median 0.868±0.005 0.875±0.003 0.876±0.002 0.871±0.004 0.842±0.003 0.874±0.003 

Mean 0.839±0.001 0.842±0.001 0.839±0.003 0.839±0.004 0.805±0.001 0.836±0.002 

50 basins 

NSE 
Median 0.77±0.006 0.784±0.003 0.781±0.007 0.792±0.007 0.763±0.011 0.774±0.006 

Mean 0.569±0.047 0.621±0.032 0.587±0.038 0.593±0.062 0.619±0.014 0.549±0.085 

R 
Median 0.895±0.004 0.897±0.003 0.893±0.002 0.899±0.004 0.87±0.022 0.896±0.002 

Mean 0.844±0.002 0.847±0.002 0.844±0.002 0.847±0.002 0.829±0.003 0.849±0.0 

100 basins 

NSE 
Median 0.763±0.007 0.771±0.002 0.772±0.009 0.768±0.012 0.733±0.019 0.774±0.006 

Mean 0.661±0.019 0.64±0.002 0.772±0.009 0.768±0.012 0.733±0.019 0.774±0.006 

R 

Median 0.887±0.004 0.893±0.003 0.892±0.003 0.889±0.004 0.877±0.1 0.889±0.001 

Mean 0.837±0.001 0.83±0.002 0.837±0.002 0.837±0.002 0.821±0.006 0.839±0.003 
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Conclusions and next steps 

We examined how suitable an LSTM-based multi-task setting can be to model reservoir inflows and 

volumes on a daily timestep. While the inflow modelling shows quite robust and promising results, the 

performance of the volume predictions strongly depends on the reservoir operations. This should not 

be confused with the absolute value of the metrics (since the signals of the volume and the inflow are 

very different in nature). It is very likely that the reasons for the lack in generalizability are (a) missing 

inputs that describe the reservoir operations, and (b) the low amount of training data for the reservoir 

volume prediction. To address this scarcity, we explored different data augmentation approaches in a 

setting where we artificially increased the number of basins for training. Our data augmentation 

experiments indicate that predictions can be improved for low data regimes (<100 training basins) but 

not by much. For larger data regimes (>100 training basins) the augmentation approaches seem to get 

amortized: as more data becomes part of the training the improvements due to augmentation become 

marginal. This indicates that, for now, no task-agnostic data augmentation techniques exist that can 

expand large datasets in such a way that additional model capabilities are built. The results are in 

accordance with insights from the vision domain, where simple task-informed augmentation (say, 

mirroring an image from a bus from left to right, while maintaining the label “bus”) are heavily used 

(Shorten & Khoshgoftaar, 2019; Iwana & Uchida, 2021). Whether such augmentation can be found, 

constructed, and exploited efficiently for hydrological applications remains a question for future 

research.  

  

2.3  Ensemble-tree models for reservoir storage 
 

Method 

Ensemble-tree models are explored as an option for predicting reservoir storage at a monthly 

timestep, in both simulation and forecasting mode. These models have the benefit of being less data-

hungry and computationally expensive, more user-friendly, and with a higher degree of explainability 

compared to LSTM and other deep-learning models. These models are applied to reservoirs in the 

Duero basin and reservoirs across the UK (including the Anglian region). 

This approach has been implemented in two ways:  i) by building individual models for each reservoir 

using timeseries data specific to that reservoir, and ii) by building a multi-reservoir model which uses 

timeseries data for all the reservoirs included (Duero and UK) as well as reservoir and catchment 

characteristics sourced from the Caravan and CAMELS datasets (Kratzert et al., 2023; Delaigue et al., 

2024).  

Individual models maximise computational efficiency and flexibility by minimising the number of data 

types required but may be less accurate than a multi-reservoir model, particularly for extremes, since 

the training data will be more limited. Using a multi-reservoir model has shown promise for data-

driven rainfall-runoff modelling (Kratzert et al., 2019), but comes at the cost of both increased data 

demand and training time. These two approaches will be compared here. 

 

The data used for these models is presented in Table 4. The individual models only require time series 

data, whereas the multi-reservoir model requires all the data listed. It should be noted that some of 

the catchment characteristics have been calculated from timeseries over the catchment, and if those 

timeseries extend into our testing period (e.g. those calculated from the ERA5 dataset) we have 

recalculated them on a backwards-looking ten-year rolling window to ensure no data-leakage 

between the testing and training data. 
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The process of building an ensemble-tree model for reservoir storage prediction is summarised in 

Figure 6 and more details can be found in Appendix B. Four case study reservoirs in the Duero basin, 

described in Table 5 are used to explore the potential of ensemble-tree models for simulating reservoir 

storage at 1 and 3 month lead times (note that these case study reservoirs are not the same set used 

in the LSTM model). For the 3 month simulation, the model is run recursively, i.e. using the simulated 

storage for months 1 and 2 to predict month 3, but with observed precipitation and temperature 

variables. In forecast mode, these variables will be replaced with forecast precipitation and 

temperature. 

 

Figure 6. Summary of the steps taken to build individual Random Forest(RF)-type reservoir models, and the Extra 

Trees (ET) multi-reservoir model. 
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Table 4. Summary of the data used to build Extra Trees (ET) models for reservoir storage. 

Time series Data Data Source 
Catchment Characteristics 
from HydroAtlas 

Catchment 
Characteristics from 
ERA5 data 

Data 
Source  

Reservoir storage 

 
(CEDEX, 2024; 
NRFA, 2022; 

Hollis et al., 2019) 

Natural discharge4 Aridity index 

(Kratzert 
et al., 
2023; 

Delaigue 
et al., 
2024) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Precipitation Degree of regulation 

Fraction of 
precipitation falling as 
snow 

Temperature Elevation5 

Average duration of 
high precipitation 
events10 

  Groundwater table depth 

Frequency of high 
precipitation days10 

Reservoir 
Characteristics Data Source Inundation extent6 

Average duration of 
low precipitation 
events11 

Total capacity 

(Lehner et al., 
2011; Durant & 
Counsell, 2018; 

Hughes M., 2004)  
 
 
  

Limnicity - percent lake 
area 

Frequency of low 
precipitation days11 

Catchment area Lake Volume Precipitation8 

Operator Reservoir volume 
Potential 
evapotranspiration8  

Impounding or 
non-impounding1 River area Moisture index9  

Individual or 
grouped2 Land surface runoff Seasonality 

Purpose3 Stream gradient Air temperature8 

  Snow cover extent7   

  Land cover class  

  Human development index  

  

Irrigated area extent 
(equipped)  

  Population count  

  Soil water content8  

  Urban extent  
1.Distinguishes between reservoirs with inflows primarily fed by streamflow and those by pumped water. 
2.Distinguishes between single water body reservoirs, and those made of linked water bodies (e.g. cascading 
reservoirs). 3. e.g. water supply, irrigation, hydropower, flood control. Allowance is made for reservoirs with more 
than one purpose. 4.Annual min/max/mean; 5.min/max/mean; 6.Annual mean/min, long-term max; 7.Monthly 
mean, annual max/mean; 8.Monthly mean, annual mean; 9.Annual mean; 10.High-precipitation defined as ≥5 times 
mean daily precipitation. 11.Low-precipitation defined as <1 mm per day. 
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Table 5. Description of the case study reservoirs used to explore reservoir storage prediction with ML methods. 

Reservoir 
Name 

Latitude Longitude Capacity 
(hm3) 

Surface 
Area (km2) 

Catchment 
Area (km2) 

River 

Camporredondo 41.89 -3.26 70 4.19 231 Carrión 

Porma 42.93 -4.71 318 11.79 253 Porma 

Santa Teresa 40.67 -4.40 496 27.19 1853 Tormes 

Cuerda del Pozo 41.87 -1.30 249 22.10 550 Duero 

 

Forecasting. To explore the potential for forecasting with these models, we test the multi-reservoir 

ET model in forecast mode over reservoirs in the UK, using monthly and seasonal ensemble 

meteorological forecasts derived from Historic Weather Analogues (HWA) and produced by the UK 

Met Office (Stringer et al., 2020) to drive the model. These meteorological forecasts are currently used 

to produce hydrological forecasts over the UK (UKCEH, 2025). The seasonal meteorological forecasts 

have 510 ensemble members, and here we use the periods: March, April, May (MAM); June, July, 

August (JJA); September, October, November (SON); and December, January, February (DJF). The 

monthly meteorological forecasts have 140 members. 

The monthly forecast skill has been evaluated for UK reservoirs using the fair Continuous Ranked 

Probability Score (CRPS) (Wilks, 2011). The CRPS compares the cumulative distribution functions of 

the forecast to the observation for each month and is analogous to the squared error, with a perfect 

forecast giving a CRPS of 0. The ‘fair’ CRPS accounts for the finite size of the forecast ensemble by 

correcting the score towards that which would be obtained from an infinite ensemble (Ferro, 2014). 

This metric is then used to calculate the Continuous Ranked Probability Skill Score (CRPSS) (Wilks, 

2011), defined as: 

𝐶𝑅𝑃𝑆𝑆 = 1 −
〈𝐶𝑅𝑃𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡〉 

〈𝐶𝑅𝑃𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒〉
 

where angled brackets denote an average of the variable within it. CRPSforecast are the CRPS scores of 

the monthly ensemble forecast, and CRPSreference are values for a reference forecast: in this case the 

distribution of reservoir storage for a given month is used. Therefore, the CRPSS score describes the 

value added by using the model over assuming reservoir storage follows historical patterns, with 

positive scores indicating added value and 1 an optimal forecast. Since the reference CRPS is calculated 

from a historical distribution of observed reservoir storage, only reservoirs with a sufficiently long 

record are used in this analysis. 
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Results 

Model evaluation. Model performance on the test data is evaluated using NSE which has a score of 1 

for perfect predictions. For each of the individual models, the Extra Trees Regressor (ET) was selected 

as the best performing model. Comparison between individual and multi-reservoir ET models are 

made for four case study reservoirs in the Duero: Camporredondo, Porma, Santa Teresa, and Cuerda 

del Pozo (described in Table 5).  Model performance for storage simulations for the multi-reservoir ET 

model is presented for all the reservoirs included in the model (from the Duero and the UK), and 

forecast performance is evaluated for UK reservoirs only. 

Comparison between simulation skill for the multi-reservoir and individual ET models and our baseline 

ARIMA models (see Appendix B) at 1 and 3 months, for each case study reservoir, is presented in Table 

6. Time series of observed and predicted reservoir storage are shown in  

Figure 7 (note that only the individual ET models have been included to prevent the plots becoming 

cluttered). Both the ET and ARIMA models perform better for Porma and Cuerda del Pozo reservoirs, 

which have smoother storage patterns, compared to Camporredondo and Santa Teresa. Skill 

decreases for each model for 3 month ahead simulation compared to 1 month ahead, with the ET 

models showing a smaller decrease in skill compared to the ARIMA model. The ET models show a small 

improvement on the ARIMA models for 1 month ahead forecasts and perform better than the ARIMA 

model at a 3 month lead time. The multi-reservoir ET model performs better than the individual ET 

models at 1 month lead time for all the case study reservoirs, and at 3 months it performs better for 

the Porma and Santa Teresa reservoirs, with similar performance for Camporredondo and Cuerda del 

Pozo.  

 

Table 6. Model skill (Nash-Sutcliffe Efficiency) in predicting reservoir storage at 1 and 3 months for individual 

Extra Tree (ET) models (indv), the multi-reservoir ET model (multi), and the baseline ARIMA model. 

 
Reservoir 

 1 month   3 months 

Extra Trees  
ARIMA  

Extra Trees  
ARIMA indv multi indv multi 

Camporredondo 0.84 0.86 0.83 0.69 0.68 0.64 

Porma 0.95 0.97 0.97 0.81 0.89 0.80 

Santa Teresa 0.90 0.91 0.89 0.71 0.74 0.62 

Cuerda del Pozo 0.95 0.97 0.95 0.85 0.86 0.70 
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Camporredondo  

 
Porma 

 
Santa Teresa 

 
Cuerda del Pozo 

 
 

Figure 7. Reservoir storage: observed (solid blue); individual Extra Tree (ET) model (dashed green); ARIMA model 

(dotted pink), for 1 month ahead predictions. 

The results for the multi-reservoir ET model are presented across all the reservoirs included in the 

model in Table 7. Here the model is evaluated for the whole test period (compared to the results 

presented in Table 6 where the evaluation period was cropped to match that of the individual models), 

so the results for the case study reservoirs are slightly different to those in Table 6. Predicted and 

observed storage for selected reservoirs from the multi-reservoir ET model are presented in Figure 8.    

Table 7.  Reservoir characteristics and model performance for the multi-reservoir Extra Tree model (Nash-Sutcliffe 

efficiency, NSE) at 1 and 3 months lead time. 

Reservoir Name Basin* Country 
Capacity 

(hm3) 
Catchment 
Area (km2) Purpose† 

1 month 
NSE 

3 months 
NSE 

Barrios de Luna Duero Spain 308 499 
Irr; WR; 
P 0.97 0.92 

Porma Duero Spain 318 253 Irr; P 0.97 0.89 

Riaño 
Duero Spain 651 593 Irr; P 0.97 0.89 

Cuerda del Pozo Duero Spain 249 550 Irr 0.97 0.86 

Villameca Duero Spain 20 56  0.97 0.91 

Aguilar de 
Campoo Duero Spain 247 546 Irr; P 0.96 0.82 



 

 18                                    Version 1.0 

 

D3.4 DATA DRIVEN MODELLING TOOLS 

Linares del 
Arroyo Duero Spain 58 760 Irr; P 0.95 0.82 

Roadford 
South 
West UK 35 31 WR 0.95 0.82 

Bewl Thames UK 28 21 WR 0.94 0.80 

Wimbleball 
South 
West UK 21 29 WR 0.94 0.88 

Colliford 
South 
West UK 29 12 WR 0.93 0.80 

Castro de las 
Cogotas Duero Spain 58 852 WR 0.93 0.72 

Santa Teresa Duero Spain 496 1853 Irr; P 0.92 0.74 

Elan Valley Severn UK 99 184 WR 0.92 0.86 

Requejada la Duero Spain 65 221 Irr; P 0.91 0.77 

Derwent Valley Humber UK 40 126 WR 0.91 0.83 

Compuerto Duero Spain 95 308 
Irr; WR; 
P 0.91 0.78 

Uzquiza Duero Spain 75 150 WR 0.90 0.68 

Ardingly South East UK 5 23 WR 0.90 0.74 

Rutland Anglian UK 117 73 WR 0.88 0.63 

Clatworthy 
South 
West UK 54 18 WR 0.87 0.81 

Llyn Celyn‡ Dee UK 70 60 WR 0.87 0.68 

Vyrnwy Severn UK 55 74 WR 0.87 0.81 

Camporredondo Duero Spain 70 231 Irr; P 0.86 0.65 

Cervera de 
Ruesga Duero Spain 10 53 Irr; P 0.84 0.23 

Arlanzon Duero Spain 22 104 Irr; WR 0.83 0.61 

Loch Bradan Scotland UK 23 15 WR 0.83 0.65 

Loch Katrine Scotland UK 111 194 WR 0.82 0.74 

Daer Scotland UK 22 47 WR 0.82 0.71 

Brianne 
Western 
Wales UK 62 88 WR 0.80 0.58 

Llyn Brenig‡ Dee UK 61 22 WR 0.48 -1.61 
*In the UK, these are basin districts 
†Irr: irrigation; WR: Water Resources; P: hydropower 
‡Note that these reservoirs have shorter datasets so are used solely for model testing (i.e. not model training)  

 

The multi-reservoir ET model shows good performance at all the reservoirs at 1 month ahead 

(NSE>0.8) with the exception of Llyn Brenig (NSE=0.48), although these high scores are due in part to 

the seasonality of the reservoir storage timeseries. Model skill decreases at 3 months, as anticipated, 

but remains high for most of the reservoirs (median NSE=0.78). In the multi-reservoir model, different 

reservoirs having different numbers of data points in the test and training set due to the train/test 

split (see Appendix B for details). Perhaps unsurprisingly, model performance across the reservoirs is 

correlated to the ratio of data points in the training set compared to the total number of data points 

for each reservoir. This also allows us to test the model on reservoirs that were not seen during the 

training phase, namely Llyn Celyn and Llyn Brenig.  
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Four reservoirs from the multi-reservoir ET model were selected for further investigation: 

• Barrios de Luna, where the model performs well at 1 and 3 months lead time. 

• Cervera de Ruesga, where the model performance significantly degrades between 1 and 3 

months. 

• Llyn Celyn, an ‘unseen’ reservoir where the model performs well.    

• Llyn Brenig, an ‘unseen’ reservoir where the model performs poorly. 

Time series of these reservoirs (observed and simulated storage) are shown in Figure 8. Visual 

inspection of this figure, highlights that the model performs very well at Barrios de Luna at both 1 and 

3 month lead time, with some underestimation of the storage at high levels but good representation 

of the peaks in the drier years 2012 and 2017. The model performs reasonably well at Cervera de 

Ruesga for 1 month ahead predictions. However, it does overestimate storage during the drier winter 

months, but performance drops significantly at a 3 month lead time. Early data from Cervera de 

Ruesga (not shown) shows that the storage is very erratic during the initial ten years, though it does 

settle into a more regular pattern after 1990, which may contribute to the reduction in model skill. 

The model performs well at Llyn Celyn, despite the non-typical storage pattern. The model captures 

the historic low in the summer of 2022 with only a slight overestimation, although the 3 months ahead 

prediction has a tendency to overestimate storage during previous dry summer/autumn periods such 

as those in 2014 and 2018. At Llyn Brenig the model shows only moderate performance at 1 month, 

and poor performance at 3. The storage pattern at Llyn Brenig is very a-typical, which likely results in 

the poor model performance. 

Forecasting. The CRPSS for UK reservoirs forecasting at a monthly timestep are presented in Table 8. 

Results show added value over the historical distribution for all reservoirs (i.e. CRPSS>0) for monthly 

forecasts and are roughly correlated with model performance in simulation mode. 

Figure 9 and Figure 10 show an example of the reservoir storage forecasts at a seasonal and monthly 

timestep respectively, along with the meteorological forecasts used to drive the model, at the Rutland 

reservoir for selected years. The historic range of storage values for a given month or season is plotted, 

using the same percentile ranges as the UKCEH hydrological outlook (UKCEH, 2025): the 13th, 28th, 

72nd, and 87th percentiles, which have been calculated on an expanding window. These examples allow 

us to explore whether the reservoir model is skilful in forecasting reservoir storage when the Rutland 

reservoir storage is unusually low (2011) and unusually high (mid to late 2012). 

Seasonal forecasts at Rutland (Figure 9) show that the model is capable of forecasting reservoir storage 

at seasonal timesteps with reasonable precision when the storage levels are in a normal to notably 

low range: the observed values often fall within the ensemble of forecasts during these periods, and 

the median of the forecast is generally in the same category as the observed value. However, the 

model fails to capture the exceptionally high levels of storage in the JJA and SON seasons in 2012, with 

unexpectedly high rainfall and low temperatures likely contributing to the model performance. 

Monthly forecasts (Figure 10) show a similar pattern, although the observed value falls within the 

ensemble of predictions less often, likely due to the smaller ensemble size (140 compared to 510) and 

the higher levels of variability at a monthly timestep. The model shows stronger performance during 

normal to low storage periods (2011 to March 2012) compared to high storage periods (April to 

December 2012). While the underestimation of storage in April 2012 can be attributed to a remarkably 

wet April that year, the model continues to underpredict for a number of months after that despite 

being updated with the previous months observed storage value.   
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Barrios de Luna  

 
Cervera de Ruesga 

 
Llyn Celyn

 
Llyn Brenig 

 
Figure 8. Reservoir storage for selected reservoirs in the multi-reservoir Extra Tree model: observed (solid blue); 
1 month ahead (dashed green); 3 months ahead (dotted pink). 

Table 8. Continuous Ranked Probability Skill Score (CRPSS) metric for UK reservoirs run in forecast mode at a 

monthly timestep. Only reservoirs with a sufficient historical record have been included. 

Reservoir Name Basin District Capacity (hm3) 
Catchment 
Area (km2) Purpose† CRPSS (monthly) 

Roadford South West 35 31 WR 0.76 

Bewl Thames 28 21 WR 0.67 

Wimbleball South West 21 29 WR 0.66 

Colliford South West 29 12 WR 0.82 

Elan Valley Severn 99 184 WR 0.37 

Derwent Valley Humber 40 126 WR 0.51 

Ardingly South East 5 23 WR 0.51 

Rutland Anglian 117 73 WR 0.56 

Clatworthy South West 54 18 WR 0.40 

Vyrnwy Severn 55 74 WR 0.37 

Loch Bradan Scotland 23 15 WR 0.49 

Loch Katrine Scotland 111 194 WR 0.28 

Daer Scotland 22 47 WR 0.30 

Brianne Western Wales 62 88 WR 0.23 
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a) Seasonal storage forecast, Rutland 

 
                                 2011                                                        2012                                                        2013 

b) Seasonal meteorological forecast, Rutland 

     
                                     2011                                                    2012                                                    2013 
Figure 9. Seasonal forecasts at the Rutland reservoir: a) reservoir storage, b) rainfall (blue) and temperature (red) 

used to drive the model, for the years 2011-2013. Violin plots show the distribution of the ensemble members, a 

solid dash shows the observed values for that season, and the stacked bar lines indicate percentiles for the historic 

reservoir storage data for that season (calculated on an expanding window). 

a) Monthly storage forecast, Rutland

                                                   
.                                                        2011                                                                                           2012 
b) Monthly meteorological forecast, Rutland 

     
                                                        2011                                                                                           2012 
Figure 10. Monthly forecasts at the Rutland reservoir: a) reservoir storage, b) rainfall (blue) and temperature 

(red) used to drive the model, for the years 2011-2012. Violin plots show the distribution of the ensemble 

members, a solid dash shows the observed values for that month, and the stacked line plot indicates percentiles 

for the historic reservoir storage data for that month (calculated on an expanding window). 
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Discussion 

Individual ET models show reasonable skill at predicting monthly storage in the selected case study 

reservoirs using historic storage and rainfall. Furthermore, they are quick to train and run, so have 

potential to be used for short-term forecasting driven by rainfall forecasts. They show similar 

performance to the baseline ARIMA models at 1 month lead time and outperform the baseline at a 3 

month lead time. 

The multi-reservoir ET model generally performs better than the individual models at both 1 and 3 

month lead time for the case study reservoirs, so should be considered as an alternative to the 

individual models where possible. However, the multi-reservoir and individual models were only 

compared at four case study reservoirs, and a more thorough comparison would be required to 

confidently state that multi-reservoir models are preferable for this problem. 

The data demand for the multi-reservoir model is significantly higher than the individual models, 

which can be limiting. As a counterpoint to this, the multi-reservoir model can be applied to reservoirs 

with shorter historic datasets, since the remaining reservoirs provide a substantial set of training data. 

This is demonstrated in the application of the multi-reservoir model to reservoirs that were not seen 

in the training data at all, although the performance of the model was mixed for these reservoirs, so 

further investigation would be useful. 

Forecasting. The multi-reservoir ET model shows promise for use in forecast mode, with all reservoirs 

considered showing added value for the monthly forecast compared to using historical storage as a 

forecast method. Several years of monthly and seasonal forecasts were examined at the Rutland 

reservoir, and this analysis demonstrated that the model performed better in normal to low storage 

periods compared to high storage periods for the Rutland over the years 2011 to 2013. This could, in 

part, be due to the unexpectedly high levels of rainfall and low temperatures in the late spring and 

early summer of 2012 but may also be a result of the unprecedentedly high reservoir stores that were 

observed for those months. While high reservoir storages are present in the training data (many 

reservoirs in the training data regularly reach full capacity), the normal range for Rutland reservoir in 

the summer months is much lower than the 2012 values, so the model (which is trained on historical 

patterns) may have struggled to anticipate such values. 

This snapshot analysis, while interesting, is far from comprehensive and much more analysis is 

required for this model in forecast mode.  

 

Conclusion and next steps 

Both the individual and multi-reservoir ET models show potential for predicting reservoir storage at a 

monthly timestep. The multi-reservoir model generally simulates reservoir storage well across a range 

of reservoirs at 1 and 3 months, and it would be useful to add more reservoirs into the model to 

explore the model potential in other regimes (e.g. the reservoirs in the Seine which are operated for 

flood control). It would also be good to compare more individual models to the multi-reservoir model 

to be able to give a more informed comparison. 

Initial analysis of the multi-reservoir ET model in forecast mode has been undertaken, with promising 

results shown for reservoirs in the UK driven by the Met Office’s HWA forecast. Future steps include 

a more thorough analysis of the forecast skill in the UK and extending the forecasting to reservoirs in 

other basins. 
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2.4 Overview of reservoir models  
 

The challenge of simulating reservoir storage has been explored using two methods with distinct 

ambitions: an LSTM model to simulate daily reservoir inflow and storage, and ensemble tree methods 

to forecast monthly reservoir storage at 1 to 3 months ahead. The LSTM model demonstrated 

promising results for inflow simulations, and for storage simulations in four of the five reservoirs 

considered, but failed to accurately simulate storage for the Camporredondo reservoir (Duero). Scarce 

data on reservoir operations and low volumes of training data overall may have contributed to this 

result. Various data augmentation methods were trialled to address this, but only small improvements 

in model performance were seen. Therefore, this model can potentially be used to simulate reservoir 

inflow and storage on a daily timestep but may not be easily generalizable to new reservoirs, due to 

the data requirements and the possible performance issues.   

The ensemble-tree models have shown good performance for simulating reservoir storage for most 

of the reservoirs modelled, with the multi-reservoir model generally outperforming individual 

reservoir models due to the increased amount of training data available to the multi-reservoir model. 

Initial results show good performance of the multi-reservoir model in forecast mode over the UK 

reservoirs. Although more analysis is required, the model demonstrates potential to be used as part 

of operational hydrological forecasts.    
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3 Estimation of monthly water table depth anomalies based on 

GRACE, ERA-5 and TSMP simulations 
 

3.1 Introduction 
 

Groundwater stores represent almost a third of global total freshwater resources and are an essential 

resource for sustaining many agricultural, industrial and domestic activities. In recent years, stresses 

on groundwater resources have been increasing due to the population growth. In addition, climate 

change might affect the natural recharge cycle of groundwater reservoirs by altering the precipitation 

and evapotranspiration patterns (Agarwal et al., 2023). Therefore, a suitable monitoring of 

groundwater levels (GWLs) and storages is essential to assess its potential and long-term 

sustainability. Improved groundwater models have been identified as research priorities for the 

Duero, East Anglia, and Seine river basins. 

Traditional approaches to GWL assessment rely on the use of monitoring wells, providing observations 

for specific locations. However, measurements of the GWL taken at a single location might not be 

representative of the situation in the entire area of interest. Since in-situ measurements are not 

sufficient to assess continuous groundwater conditions, the use of numerical models has become an 

important tool for understanding groundwater dynamics over large areas (Lall et al., 2020). 

Significant progress has been made in groundwater modelling, which plays an important role in the 

development and management of groundwater resources (Gaur et al., 2011; Akter & Ahmed, 2011). 

As the physical properties and processes governing groundwater flow are highly heterogeneous, many 

groundwater management problems require complex and fully distributed models that can well 

represent hydraulic properties with multiple boundary conditions. In addition, Kollet and Maxwell 

(2006) and Rahman et al. (2019) argue that surface-groundwater interactions should be incorporated 

into groundwater modelling to provide more reliable predictions. Thus, there has been a common 

interest to include more physically based models with higher spatial resolution up to continental 

domains (Condon et al., 2021). 

Satellite remote sensing can also complement existing monitoring networks and modelling studies, 

filling gaps in spatial and temporal coverage. In particular, the NASA’s Gravity Recovery and Climate 

Experiment (GRACE) can reliably measure monthly groundwater storage (GWS) change over large 

scale-areas (~200,000 km2). This is useful to evaluate global total water storage (TWS) changes and 

their impacts associated with extreme event conditions and climate change. GRACE satellites have 

also been integrated with hydrological and land surface models to analyse TWS and GWS changes 

across large areas, such as the Amazon basin (Chen et al., 2009), the Yangtze River basin (Zhou et al., 

2017), northwestern India (Rodell et al., 2009), and California’s Central Valley (Famiglietti et al., 2011; 

Liu et al., 2019). However, due to its coarse spatial resolution, GRACE data cannot be directly used to 

investigate TWS changes in small catchments or local areas.  

Given that GRACE has limitations at local and regional scales due to its coarse resolution, downscaling 

techniques are required (Wilby & Wigley, 1997; Atkinson, 2013). While computational processes of 

dynamical downscaling are more complex and require extensive computational time and resources, 

statistical downscaling methods have been receiving more attention to obtain high-resolution 

hydrological and climate data.  Such examples include soil moisture (Wen et al., 2019; Peng et al., 

2017), precipitation, temperature (Fasbender & Ouarda, 2010), and evapotranspiration (Tan et al., 

2019). The statistical downscaling methods are easy to implement, and the downscaled results are 
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deemed of sufficient accuracy. They mainly establish a relationship between the low-resolution target 

data and variable data and then input high-resolution variable data into the regression model to 

output high-resolution target data (Chen et al., 2021).  

This study aims to bridge the scale gap between coarse-resolution observations and high-resolution 

simulations for monitoring GWLs over large areas. It integrates GRACE satellite data, ERA5-Land 

reanalysis datasets, and simulations from the Terrestrial Systems Modelling Platform (TSMP) to 

estimate monthly water table depth anomalies (WTDA) in the Seine River basin. Two data-driven 

models, Random Forest (RF) and Long Short-Term Memory (LSTM) networks, were compared to 

emulate TSMP WTDA outputs and downscale GRACE data for local and regional groundwater 

management. The methodology involves constructing RF and LSTM models at pixel scale to simulate 

monthly water table depth time series at a spatial resolution of 0.11 degrees (TSMP-G2A). The results 

of this study are published in Avila et at (2025), this publication provides further details about the 

methodology. 

 

3.2 Materials and Methods  
 

Study area 

The Seine River Basin (SRB), located in northern France, covers approximately 76,000 km² and lies 

within the sedimentary Paris Basin, a major European groundwater reservoir (Figure 11). It has a 

pluvial oceanic climate with an average annual precipitation of 666 mm and a mean annual discharge 

of about 600 m³/s at its outlet (F). The basin features interconnected aquifers in various geological 

formations, with groundwater significantly contributing to river flow (Rousset et al., 2004)). Land use 

is primarily agricultural (51%), followed by woodland (25%) and grassland (18%) (Mignolet et al., 

2007). Annual water demand in the basin is about 1.8 billion m³ (23 mm/year per unit area), with 55% 

sourced from groundwater for drinking, industry, and irrigation (Tavakoly et al., 2019). While France 

has not experienced extreme aquifer depletion, long-term sustainability faces challenges from 

reduced recharge due to climate change, sea level rise, and future changes in groundwater usage 

(Maréchal & Rouillard, 2020). 
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Figure 11. The Seine River Basin (a) Location and distribution of groundwater observation wells; (b) Digital 

Elevation Model (DEM); (c) Land cover; (d) Aquifer types. 

 

General Approach  

The adopted methodology to estimate monthly WTDA is based on the integration of large-scale 

hydrological simulations with remote sensing and reanalysis datasets. The models are trained at the 

pixel scale over the Seine River Basin, incorporating hydrological and climatological variables from 

ERA5-Land and TSMP-G2A datasets (Figure 12). The approach aims to emulate TSMP-simulated WTDA 

and refine GRACE data for local groundwater estimation. Model performance is evaluated by 

comparing results with TSMP simulations and in-situ groundwater observations, and the performance 

is assessed using Pearson correlation (r), Kling-Gupta Efficiency (KGE), and Root Mean Square Error 

(RMSE).  
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Figure 12. Framework of GRACE TWSA downscaling based on Terrestrial Systems Modelling Platform (TSMP) and 

Long Short-Term Memory (LSTM) network. The model considers Jet Propulsion Laboratory Release 06 (JPL-

RL06M) of the GRACE data processing and ERA5-Land data to obtain the main meteorological variables.  

 

GRACE Total Water Storage (TWS) 

The GRACE (Gravity Recovery and Climate Experiment) satellites, jointly developed by the National 

Aeronautics and Space Administration (NASA) and Deutsches Zentrum für Luft- und Raumfahrt (DLR), 

operated from March 2002 to October 2017. Currently, GRACE solutions are mainly divided into two 

categories: Spherical Harmonic Coefficient (SHC) and Mass Concentration solutions (Mascon). For this 

study we used the GRACE TWS product (RL06 V1.0) from the Jet Propulsion Laboratory (JPL) mascon 

solution with a 0.5° × 0.5° grid. The JPL mascon approach models Earth’s gravity field as discrete mass 

concentrations on a grid rather than as spherical harmonics. The JPL mascons are constrained by a 

priori information from geophysical models, such as global hydrological models, ocean circulation 

models, and satellite altimetry data (Watkins et al., 2015), and a coastline resolution improvement 

(CRI) filter is applied to reduce spatial leakage from land to oceans (Wiese et al., 2016). Temporal data 

gaps (~20% of total values) during the study period were interpolated using the spline method.  

 

Reanalysis Data – ERA5-Land 

The ERA5-Land reanalysis dataset provides high-resolution (9 km) global land variable data spanning 

from 1950 to near-present. It is generated through global high-resolution numerical integrations of 

the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model, utilizing 

downscaled meteorological forcing from the ERA5 climate reanalysis and incorporating an elevation 

correction for near-surface thermodynamic conditions (Muñoz-Sabater et al., 2019). This finer 

resolution, compared to 31 km for ERA5, enhances its suitability for applications in water resource 

management, land use, and environmental monitoring. Thus, it provides researchers and practitioners 

more accurate and detailed data for analysis and decision-making (Xie et al., 2022). For this study, 

hourly data from 2002 to 2022 were used to analyse air temperature at 2 m above the surface, daily 
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precipitation, and evaporation. Maximum and minimum monthly temperatures, as well as total 

monthly precipitation and evaporation, were estimated. The dataset is accessible at 

https://cds.climate.copernicus.eu. 

 

Terrestrial System Modelling Platform (TSMP) 

TSMP is a fully coupled atmosphere-land-surface-subsurface modelling system that gives a physically 

consistent representation of the terrestrial water and energy cycle from the groundwater via the land 

surface to the top of the atmosphere. TSMP integrates the numerical weather prediction model 

COSMO (version 5.0.1), the land surface model (CLM3.5) and the surface-subsurface hydrologic model 

Parflow (version 3.2). TSMP has been applied in many studies to simulate the terrestrial hydrological 

processes (Shrestha et al., 2014; Kurtz et al., 2016; Sulis et al., 2018; Keune et al., 2019), including the 

PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining European Climate change 

risks and Effects) regions. Furusho-Percot et al. (2019) evaluated the performance of TSMP simulations 

over Europe (TSMP-G2A dataset), indicating a good agreement of the hydrometeorological variability 

with different observed datasets at the regional scale in the PRUDENCE regions. They mainly 

compared anomalies of temperature and total column water storage with commonly used reference 

observational datasets, resulting in r ranging from 0.73 to 0.94 for temperature anomalies and 

from 0.62 to 0.88 for precipitation anomalies. 

 
 

3.3 Results and Discussion 
 

An exploratory analysis reveals a strong spatial correlation between WTD and input variables, 

particularly highlighting the influence of meteorological and local characteristics (Figure 13). While 

TWSA, maximum monthly temperature (Tmax), and evaporation exhibit well-defined seasonal 

patterns, precipitation shows greater variability without a consistent trend. The WTD variations across 

regions indicate that factors such as topography, soil type, and water use play a significant role. In the 

Seine basin, TSMP effectively captures groundwater conditions, showing a strong negative correlation 

with GRACE-derived TWSA (mean r=-0.58, median r=-0.68), suggesting that WTD increases as water 

storage anomalies decreases. This correlation supports the potential for machine learning models to 

estimate WTD anomalies using GRACE and TSMP data. Areas with deeper WTD (>10m) show weaker 

correlations, indicating reduced coupling with surface processes. Among ERA5-land variables, 

temperature exhibits the strongest positive correlation with WTD, followed by evaporation, while 

precipitation shows a weaker, mostly negative correlation, with sign reversals in regions with higher 

WTD values. 

https://cds.climate.copernicus.eu/
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Figure 13.  Spatial correlations and monthly time series for selected variables from GRACE and ERA5-Land with 

water table depth (WTD) anomalies obtained from TSMP. The blue time series represent the spatial mean, and 

the grey time series depict the variation across individual pixels. 

Figure 14 presents the performance analysis of RF and LSTM models against TSMP simulations. Based 

on the KGE, r, and RMSE, the results indicate that LSTM slightly outperforms RF, with an average KGE 

of 0.54 compared to 0.52. The RF models achieve a lower average RMSE (0.1 m) than LSTM (0.23 m), 

while their r values are similar (0.61 for RF and 0.60 for LSTM). Lower KGE values are observed in 

regions where GRACE and TSMP show weak correlation, and RMSE analysis suggests lower errors in 

areas with shallower WTD. The time series comparison reveals that regions with shallow WTD (near 

the surface and main rivers) display a clear seasonal pattern, whereas deeper WTD regions exhibit 

more variability. 

The independent validation of LSTM and RF models was conducted using in situ WTD observations, 

with TSMP-derived values as a baseline (Figure 15). Standardized values were calculated for 486 WTD 

wells, which were matched and/or averaged to the nearest pixel, resulting in 236 pixels with observed 

data. The r analysis, shown in Figure 15, indicates an average correlation of 0.3 across all wells, with a 

maximum of 0.89. Performance varied by location, with wells in the upper catchment (points d, e, and 

f in Figure 15) exhibiting stronger seasonal patterns and higher correlations (0.42–0.89) with lower 

RMSE values (0.99–0.28). These results suggest that groundwater dynamics in these regions are more 

closely linked to surface processes, leading to better model performance. 
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Figure 14. Comparative performance metrics of water table depth (WTD) obtained from Terrestrial Systems 

Modelling Platform (TSMP) and the downscaled WTD obtained from Long Short-Term Memory (LSTM) and 

random forest (RF) models. The metrics include: Kling-Gupta efficiency (KGE), root mean square error (RMSE) and 

Pearson’s correlation coefficient (r). 

Levene's test was conducted to assess the statistical differences between simulated and observed 

WTD time series at each well (Figure 16). On average, in 38% of the wells the null hypothesis was 

rejected at a significant level of α=0.01, while 55% did not reject at α=0.05. Here, α refers to the 

significance level which is the threshold probability for deciding whether to reject the null hypothesis. 

Additionally, 8% of the wells had p-values between 0.01 and 0.05. Like prior results, the downstream 

part of the basin exhibited more discrepancies between simulated and observed data, with orange 

dots mostly clustered in the centre. 

Interpolated maps were also generated employing r and RMSE to create confidence maps for 

monitoring groundwater anomalies (Figure 17). Both the LSTM and RF models displayed similar spatial 

patterns, with lower correlations in the southern part of the basin and values as high as 0.7 in the 

northern part. While both models showed higher correlations in some areas, they did not significantly 

outperform the original TSMP simulations, as expected. The LSTM model, however, was less 
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consistent, with several regions having correlations below 0.2, unlike the RF model. Although the LSTM 

performance could be improved with further tuning (such as adjusting epochs and batch size), the RF 

model provided a better fit for simulating WTD anomalies at the pixel level and was more efficient 

overall. Given the multi-year memory between river discharge and precipitation, the lookback period 

should be extended, especially for LSTM models. 

 

Figure 15.  Pearson correlation coefficient between observed monthly water table depth anomaly and (A) that 

simulated by Terrestrial Systems Modelling Platform  (TSPM-G2A) and the downscaled results obtained with (B) 

Long Short-Term Memory (LSTM)networks and (C) random forest (RF) for the period 2004–2018. (a)-(f) Time 

series for six arbitrary selected grid cells marked on the map in (A). Performance metrics including Pearson’s 

correlation coefficient (r) and root mean square error (RMSE) are indicated above the time series plots. 

 

Figure 16. P-values obtained from the Levene test for the baseline Terrestrial Systems Modelling Platform (TSMP-

G2A) dataset (A) and each data-driven model: Long Short-Term Memory (LSTM, B) and random forest (RF, C) at 

each water table depth observation well. 
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Figure 17. Interpolated root mean square error (RMSE) and Pearson correlation maps between observed and 

simulated groundwater depth anomalies over the Seine River basin. Simulations include results the downscaled 

results obtained with Long Short-Term Memory (LSTM) networks (left) and random forest (RF) (right). 

 

3.4 Conclusions and next steps 
 

This study demonstrates that RF and LSTM networks can successfully emulate complex hydrological 

simulations while enabling the downscaling of global satellite-derived water storage data. This offers 

a computationally efficient alternative to traditional physical modelling approaches. The pixel-scale 

modelling strategy proved particularly valuable by allowing region-specific optimization and flexible 

adaptation to local hydrological conditions. However, there were evident limitations in areas 

influenced by coastal processes and karst systems where global datasets lack sufficient resolution. 

Both RF and LSTM models performed comparably in capturing temporal water table dynamics. RF is 

more computationally efficient than LSTM and therefore may be more practical for operational 

applications. However, the potential for improved performance for the LSTM with extended temporal 

windows warrants further investigation. The discrepancies between model outputs and field 

observations in certain areas highlight the need for hybrid approaches that integrate local 

hydrogeological data with global datasets to enhance accuracy. These findings underscore machine 

learning's growing role as a complementary tool in hydrological sciences, capable of bridging the gap 

between large-scale climate products and local water management needs, while also pointing to 

important directions for future research including multi-objective learning frameworks, spatially 

explicit model architectures, and validation across diverse hydroclimatic regions. The study ultimately 

positions data-driven modelling as a valuable component of modern hydrologic assessment, 

particularly for rapid scenario testing and regional-scale analyses where traditional physical models 

may be prohibitively resource-intensive. This can address stakeholder requirements for high-

resolution information on water table depth at low computational cost. 
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4 Agricultural water use 
 

4.1 Introduction 
 

As the climate becomes warmer and drier, understanding the historical and present inter-annual 

variability in agricultural water demand and water availability could provide insights into the potential 

pressures exerted by agricultural water demand on future water availability. Modelling of agricultural 

water demand has been identified as a research priority in the Rhine basin. Sustainable water resource 

planning and management can be improved by better understanding water consumption through the 

identification of irrigation areas and changes over time. There is an increasing need to expand such 

research efforts to support informed water management decisions. Changes in climate may benefit 

the agricultural industry in humid and temperate regions as more land becomes suitable for cultivating 

crops, leading to an increased need for irrigation water. 

Most studies on impact modelling in agriculture have employed coarse spatial resolution when 

evaluating future global water availability and net irrigation requirements. Döll and Siebert (2002) 

applied the WaterGAP model at a spatial resolution of 0.5° to evaluate future global irrigation and 

water use under climate change. However, the spatial resolution used is considered insufficient to 

capture fragmented irrigated areas that significantly contribute to regional water use. A recent pan-

European study utilized the FAO crop model for climate impacts modelling and the Inter-Sectoral 

Impact Model Intercomparison Project phase three (ISIMIP3) data have improved understanding of 

irrigation water requirements at coarse spatial resolution (Busschaert et al., 2022).  The authors 

highlighted that the future increase in net irrigation water demand correlates with year-to-year 

variations in precipitation and atmospheric evaporative demand, however irrigated area itself was not 

explicitly included in their analysis.  

As a first step towards estimating agricultural water demand, this study focuses on identifying the 

spatial extent of irrigated areas in the Rhine basin. The approach uses an ML model that integrates 

land surface temperature from MODIS observations and a hydrological model to improve irrigated 

area estimates. This work is based on our previously published study and aims to improve estimates 

of regional irrigation water demand at fine spatial resolution by first quantifying current irrigated areas 

(Purnamasari et al., 2025). Understanding the extent and distribution of irrigated cropland provides 

critical information for projecting future water needs under changing climate conditions. In this work, 

we apply a ML model to estimate irrigated area in the Rhine basin, integrating outputs from a 

hydrological model with land surface temperature observations.    

 

4.2 Material and Methods  
 

Study Area 

The proposed method was tested for irrigated area in the Rhine basin which covers an area of 

approximately 160,000 km2 (Figure 18).  Agricultural land use occupies 46% of the total land use based 

on Copernicus Corine Land Cover (CLC 2018) (Figure 18b). An important characteristic of agriculture in 

the Rhine basin is the presence of irrigation systems in the Rhine Valley, located in the southern part 

of the basin along the French–German border. Agricultural activity is most prevalent from April to 
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September, when supplementary irrigation is sometimes required to prevent crop failure or improve 

yields (Purnamasari et al., 2025). 

During spring and summer, the evapotranspiration rate exceeds the precipitation rate. These 

conditions translate to deficit precipitation to supply crop water requirements. The interannual 

variability of precipitation affects the total extent of irrigated area throughout the basin. Data on the 

total irrigated area in the Rhine basin at the sub-national level (NUTS 2 units) is available from Eurostat 

and presented in Figure 18c. 

 

Figure 18. The overview of (a) subbasins, (b) aggregated land use and land cover according to CLC 2018, and (c) 

NUTS level 2 regions for which the reported irrigated area was used to evaluate the classification results are 

shown. The red box in panel (a) highlights the croplands used to collect training and test data for the supervised 

classification. Hatched regions in panel (c) indicate areas with no available reported data (Purnamasari et al., 

2025). 

 

Estimating Irrigated Area 

The multiyear irrigated area at 1 km spatial resolution from 2010 to 2019 is defined using a supervised 

classification approach based on a random forest algorithm that distinguishes irrigated from non-

irrigated land based on the daily spatiotemporal signature of land surface temperature (LST) 

differences (ΔTs). Random forest algorithm is considered robust for spatial classification because its 

ensemble learning approach reduces overfitting and effectively handles complex spatial patterns by 

incorporating diverse spatial features. These ΔTs  are calculated by comparing observed temperatures 

from MODIS sensors onboard Terra and Aqua satellites (Ts, obs) (Wan et al., 2021) with simulated 

temperatures derived from actual evapotranspiration estimates produced by the spatially distributed 

hydrological model wflow_sbm (Ts, sim). The results are presented in Figure 19. 



 

 35                                    Version 1.0 

 

D3.4 DATA DRIVEN MODELLING TOOLS 

 

Figure 19. Overview of the methodology to identify irrigated area by using evapotranspiration estimates and 

land surface temperature observations (Purnamasari et al., 2025). 

 

Training and testing data 

After obtaining daily ΔTs for the Rhine basin, we applied RF classification to produce consistent 

multiyear irrigated area. However, no pre-existing training and test datasets were available for the ΔTs 

data. Therefore, high-resolution Landsat 7 and 8 imagery was used to generate point labels for the RF 

classification trained on ΔTs data (Figure 20). True-colour images at 30 m resolution were used to 

visually identify irrigated agricultural plots with irrigation infrastructure, while 100 m thermal images 

helped reduce subjectivity of visual observations. To differentiate irrigated areas using thermal 

imagery, the standard deviation of land surface temperature over the growing season was calculated 

as irrigation tends to reduce temperature fluctuations. The dataset obtained from high-resolution 

Landsat 7 and 8 imagery was divided into two subsets: 80% as training data and 20% as test data. The 

training and test dataset for each year from 2010 to 2019 were collected to build an RF model for the 

corresponding year 
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Figure 20. A snapshot of agricultural land shows the spatial distribution of standard deviation of land surface 

temperature throughout the growing season alongside true colour images (Landsat 7 and 8 imagery), 

highlighting (a) an area of irrigated cropland and (b) a non-irrigated area (Purnamasari et al., 2025). 

To identify irrigated areas, the spatiotemporal features used for RF classification included the 10th 

percentile (p10), median (p50), 90th percentile (p90), mean, and standard deviation, calculated from 

the annual ΔTs data cube. In this study, a pixel was identified as irrigated when it received at least one 

irrigation event. Thus, if the irrigation events were recurrent within a year, these events were counted 

as one. Pixels identified as irrigated only once throughout the study period were excluded, considering 

the high installation costs of irrigation equipment true irrigated pixels are unlikely to be irrigated only 

once in a nine-year period. The final classification results differentiate irrigated from non-irrigated 

pixels but does not estimate the fraction of irrigation within each pixel which may lead to 

overestimation or underestimation of irrigated areas. 

 

Evaluation data   

The mapped irrigated areas were evaluated against the total irrigated area obtained from the 

statistical office of the European Union, Eurostat, at NUTS level 2 for the year: 2013 and 2016 (data 

code in Eurostat website: ef_poirrig), available at https://doi.org/10.2908/EF_POIRRIG (last access: 20 

June 2024). These statistics were collected from farm structure surveys (FSS). It is important to 

highlight that the methodologies and variables may vary across the EU member states, resulting in 

potential error in the validation data. The classification results were evaluated for overall, dry, wet 

NUTS2 regions which were defined based on the climatology of precipitation and potential 

evapotranspiration defined by (Purnamasari et al., 2025). The dry regions were classified as NUTS level 

2 regions that lie within the Middle Rhine sub-basins. Meanwhile, the wet regions are in the Moselle, 

Neckar, Main, and Lower Rhine sub-basins (see Figure 18a). The estimated irrigated area and the 

reported area at NUTS level 2 were mapped to evaluate the accuracy of the model. 

  

https://doi.org/10.2908/EF_POIRRIG
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4.3 Results 
 

Figure 21 shows an example time series of precipitation, evapotranspiration, simulated land surface 

temperature (Ts,sim), observed land surface temperature from MODIS (Ts,obs), and temperature 

difference (ΔTs) for non-irrigated and non-irrigated pixels for training data collected from regions 

delineated in Figure 18.  In Figure 21a, evapotranspiration gradually increases towards the peak of 

growing season in July, reaching higher magnitude than precipitation indicating a potential of water-

limited regime. After reaching its peak, evapotranspiration gradually decreased toward the end of 

growing season. For irrigated pixel, the land surface temperature difference follows the pattern of 

evapotranspiration and peaks during growing season (Figure 21b). The complete absence of irrigation 

representation in the wflow_sbm model leads to higher land surface temperatures compared to 

observations. Assuming net radiation is the same for both, a greater portion of the net radiation is 

used for evapotranspiration (latent heat flux), while less is used for heating the air (sensible heat flux). 

On the contrary, for a pixel labelled as non-irrigated, simulated land surface temperature closely 

resembles observed land surface temperature which translates to similar partition of net radiation 

into sensible and latent heat flux (Figure 21c). Based on the temporal dynamics, we use simple 

statistical measures as features to identify irrigated pixels from non-irrigated area. 

 

Figure 21.  An example of time series of: (a) monthly  precipitation (P) and evapotranspiration (PET) for the whole 

basin, and simulated land surface temperature (Ts,sim, black line), observed land surface temperature from MODIS 

(Ts,obs, blue crosses), and temperature difference (ΔTs, red dots)  for (b) an irrigated) and (c) a non-irrigated pixel 

derived from training data in 2018 to 2019 (Purnamasari et al., 2025). 



 

 38                                    Version 1.0 

 

D3.4 DATA DRIVEN MODELLING TOOLS 

Figure 22 shows the comparison between the mapped irrigated area estimated using the RF model 

and the reported irrigated area in Eurostat for 2013 (Figure 22a) and 2016 (Figure 22b). In general, the 

comparison shows a good agreement, with an R-squared values for the entire study area (Roa
2) of 0.79 

and 0.77 for 2013 and 2016, respectively. The R-squared values for the dry regions (Rdr
2) are higher for 

2013 and 2016, thus indicating a better agreement. However, the R-squared value for wet regions 

(Rwr
2), are slightly lower. The estimated data consistently exceeds the reported data, with an average 

percentage relative difference of 17% compared to the subnational statistics. These overestimations 

were observed in areas with small agricultural holdings such as in Arnsberg (DEA5) and Koblenz (DEB1) 

(<10 hectares per holding). On the contrary, the methodology performs better in estimating irrigated 

area on regions with larger agricultural holdings (>22 hectares per agricultural holding) such as 

Düsseldorf (DEA1), Rheinhessen-Pfalz (DEB3), Köln (DEA2), and Darmstadt (DE71). 

 

 

Figure 22.  The estimated irrigated map compared with the total irrigated area reported in Eurostat data for 

the year: (a) 2013 and (b) 2016 (see Figure 18c for the Eurostat NUTS 2 regions). Area in hectares are 

transformed with log(y+1) transformation. R2
oa, R2

dr and R2
wr

 denote the R-squared value for the entire study 

area (black), dry regions (red), and wet regions (blue) respectively (Purnamasari et al., 2025). 

 

Figure 23 shows the irrigation frequency for the period 2010-2019 derived from the multiyear irrigated 

maps. As can be seen in Figure 23, irrigation hotspots were identified mainly in the Lower Rhine (b), 

the Middle Rhine (c), and the main subbasins of the Rhine (d). Based on the 10 annual maps, the total 

estimated irrigated area in the Rhine basin was found to be 170 thousand hectares (4.1% of the total 

area). From this portion, 1.5% of the area consistently received irrigation throughout the study period, 

and these pixels were mostly found in the Middle Rhine (Figure 23d). 



 

 39                                    Version 1.0 

 

D3.4 DATA DRIVEN MODELLING TOOLS 

 

Figure 23.  Irrigation frequency of pixels in the Rhine basin from the multiyear maps from 2010–2019, highlighting 

regions with the highest irrigation areas in the (a) Rhine basin, (b) Lower Rhine, (c) Middle Rhine, and (d) Rhine 

valley. Panel (e) shows the irrigation frequency and corresponding area (Purnamasari et al., 2025). 

 

4.4 Discussion 
 

The difference between our estimates and the irrigated area reported in subnational statistics can be 

attributed to the following factors: (a) a mismatch in spatial resolution between our simulations (1 km) 

and the subnational statistics of irrigated area and (b) uncertainties in the reported irrigated area. The 

pixels identified as either irrigated or non-irrigated are not adjusted based on the proportion 

corresponding to the size of agricultural holdings in a region. As a result, this may lead to either an 

underestimation or overestimation of the irrigated area in regions where agricultural holdings smaller 

than 1 km2 are dominant. Meanwhile, the subnational statistics of irrigated areas were collected 

through questionnaires that were distributed to several agricultural holdings. Comparing continuous 

spatial information from classification results with point information obtained from questionnaires is 

not ideal for direct comparison.  Additionally, there are uncertainties in the reported irrigated area 

due to sampling and non-sampling errors as the FSS involves random sampling methods and 

extrapolation techniques to produce data on irrigated areas.  

 

4.5 Conclusion and next steps 
 

This study uses an ML model to estimate irrigated areas in the Rhine basin on an annual timestep from 

2010-2019, using land surface temperature from MODIS observations and a hydrological model to 

improve irrigated area estimates at a fine spatial scale (1 km). Although the results align well with 

subnational statistics, uncertainties remain due to the spatial resolution of the model. In regions 

where the actual irrigated areas are smaller than the spatial resolution of the model, this mismatch 

can lead to both overestimations and underestimations of irrigated area. 

This work represents the first step in estimating agricultural water demand and will be used in further 

work to project future water needs under changing climate condition. 
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5 Predictive mapping of groundwater quality 
 

5.1 Introduction 
 

The goal of this research is to provide a predictive mapping tool for groundwater contamination, as 

improved modelling of groundwater resources and contamination was identified as a key topic for 

research by several of the RBHs (Duero and East Anglia) and may be useful to other basins. In a certain 

sense, the objective is similar to that of traditional geostatistics, except that ML allows users to 

account for many variables at the same time. The tool of choice for this research is MLMapper 2.0. 

This is a QGIS plugin developed by the team at the Universidad Complutense Madrid and subsequently 

improved in the context of this project with the collaboration of researchers at the UK Centre of 

Ecology and Hydrology (Martínez-Santos & Renard, 2019; Gómez-Escalonilla et al., 2022a). Mapping 

groundwater contamination in space serves various purposes. Results may be used to delineate the 

areas affected by contamination at the basin scale. These can also be useful in terms of explaining 

trends in groundwater contamination in different boreholes, as well as deciding where to locate new 

monitoring boreholes. 

ML algorithms are inherently complex, and so are the relationships amongst explanatory variables 

that lead to a given target outcome. Thus, it is typically unfeasible to forecast whether one algorithm 

will outperform another, or whether an algorithm will yield good results on a dataset at all. To deal 

with this, MLMapper implements many supervised classification algorithms simultaneously, which 

then allows the modeller to select the best performing algorithm(s) for a given application. These all 

stem from the SciKit-Learn 0.24.1 toolbox (Pedregosa F. et al., 2011). MLMapper has proven suitable 

for predicting spatially distributed variables such as groundwater potential, borehole yield, nitrate 

pollution, and the presence of groundwater-dependent ecosystems (Martínez-Santos et al., 2021; 

Gómez-Escalonilla et al., 2022a; Gómez-Escalonilla et al., 2022b; Pacios et al., 2023). 

For the purpose of this report, the method and its potential outcomes are illustrated through practical 

applications in the East Anglia and Duero RBHs. 

 

5.2 Method 
 

The goal of predictive mapping, MLMapper’s main functionality, is to provide spatially-distributed 

predictions of a target variable based on a combination of predictor variables and a ground-truth 

database. This is done within a GIS environment. The underlying assumption is that a target variable, 

such as groundwater contamination, can be inferred from a series of indirect indicators (predictor 

variables) including lithology, land use, landforms, rainfall, lineaments, slope and drainage density, 

among others.  A geographic database with ground-truth information can then be used as point-

source input to train ML algorithms. Indeed, each borehole has a set of coordinates and a bivariate 

outcome, success or failure, as well as a “pixel-score” for each one of the predictor layers. If the 

borehole database presents a sufficiently large and diverse number of records, ML algorithms may be 

used to identify those patterns among the predictor variables that explain the presence or absence of 

contamination. The validated algorithm can then be extrapolated to obtain a groundwater 

contamination score for every pixel in the geographic database. This is, effectively, a predictive 

groundwater contamination map.  
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Figure 24 provides an overview of the predictive mapping routine implemented within MLMapper. 

Explanatory variables adopt the shape of layers in a GIS environment. Each algorithm attempts to find 

the combination of explanatory variable values in a pixel that leads to that pixel being classified as 

contaminated or non-contaminated (note that the threshold for contamination can vary for each 

application of MLMapper). Then, as every pixel value is known for every layer (predictor) in the GIS 

database, the combinations found by the algorithms can be extrapolated in space to develop a 

predictive map. Parameter weights are computed during this process to find out which explanatory 

variables can explain contamination more effectively. The software enables the user to pick one or 

several among a set of scoring metrics. These comprise raw test score, area under receiver operating 

characteristic curve (AUC), precision, recall, harmonic mean, and balanced score. 

 

Figure 24.  Simplified flowchart for MLMapper and its application to mapping nitrate (NO3) contamination in 

groundwater. 

Although MLMapper supports a wide range of classification algorithms, in this study we only used 

decision tree-based models. This choice is supported by a number of trial runs, as well as by previous 

studies demonstrating a better performance of this approach compared to other algorithms (Gómez-

Escalonilla et al., 2024a; Gómez-Escalonilla et al., 2024b; Gómez-Escalonilla et al., 2024c). Additionally, 

decision trees offer advantages, such as not requiring data scaling and the ability to handle pixels with 
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missing values (i.e. no need to infill the missing data). Predictive maps were thus generated using the 

Gradient Boosting Classifier (GBC), Extra Trees Classifier (ETC), Random Forest Classifier (RFC), and 

AdaBoost Classifier (ABC) algorithms. 

MLMapper selects the best performing algorithms based on user-defined performance thresholds. 

Algorithms performing poorly are discarded. The software routinely implements collinearity checks, 

randomized-search parameter fitting, cross validation and recursive feature elimination, to ensure a 

robust model. It also enables users to set the most suitable scoring metric in each case, as well as to 

carry out an ensemble of the best performing algorithms to estimate uncertainty.  

 

Datasets 

Borehole databases were made available by the Duero River Basin Authority and Anglian Water, 

respectively. Both include information on borehole coordinates, depth, wellscreens, GWL and nitrate 

content.  

Nitrate data in water supply boreholes of the basin has been used as the target variable. To increase 

the representativity of the sample, we only used those boreholes with at least ten readings within the 

2020-2024 period. MLMapper’s architecture requires boreholes to be labelled as “contaminated” or 

“uncontaminated” (i.e. “positive” or “negative” class, respectively). Therefore, a contamination 

threshold was determined for each case based on environmental and drinking water regulations. This 

amounts to 37.5 mg/l for the Duero basin and 50 mg/l for the Anglian region. As nitrate concentration 

in groundwater tends to oscillate over time, and also because data series span several years in both 

cases, certain boreholes were observed to exceed the threshold either occasionally or frequently. In 

these cases, boreholes were considered contaminated whenever nitrate content exceeded the 

threshold at least 10% of the time. This percentile was determined in agreement with the 

stakeholders. 

While the goal is the same for the two areas, the hydrogeological setting and the practical purpose is 

slightly different in each case, which constrains the number of available data points. In the Duero basin 

we attempt to map nitrate content for the whole geographical domain. This includes different 

hydrogeological conditions and aquifer types, including confined, leaky, and unconfined units, as well 

as fissured, karstic, and detrital aquifers. Thus, the Duero database included 284 points distributed 

across the whole basin. Approximately 67% of these were contaminated. In contrast, the aim in the 

East Anglian region was to map the presence of nitrate only in the chalk aquifer systems. These are 

relatively homogeneous from the hydrogeological point of view, but still feature unconfined 

conditions towards the eastern border and confined conditions in the central and western parts. The 

Anglian database included 301 points, out of which 39% were labelled as contaminated. All boreholes 

in non-chalk areas of the region were discarded. 

 

5.3 Results 
 

Duero basin 

The Duero model was trained with 284 points prior to extrapolating the results to the whole of the 

study area (Figure 25). Table 9 presents the probability of groundwater exceeding 37.5 mg/l of nitrate 

as per the four tree-based algorithms. It includes the accuracy values for each algorithm, an indicator 

that reflects the proportion of correct predictions made by the model out of the total number of 
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predictions. All models achieved high accuracy on the training set, with values between 91 and 100%, 

which suggests some degree of overfitting, particularly in the case of GBC and ETC. On the test set, 

accuracy values ranged between 86% and 90%, indicating good performance in terms of model 

generalization. 

 

Figure 25. Predictive groundwater vulnerability map for the Duero basin. Pixel-scale values are expressed as the 

probability of exceeding 37.5 mg/l of nitrate (NO3). 

Table 9. Summary of machine learning metrics in the Duero basin for the four algorithms, namely Gradient 

Boosting Classifier (GBC), Extra Trees Classifier (ETC), Random Forest Classifier (RFC), and AdaBoost Classifier 

(ABC) . Performance metrics are: Train score = optimised training score; Test score = optimised test score; Prec 0 

= precision negative class; Prec 1 = precision positive class; F1 0 = F1 score negative class; F1 1 = F1 score positive 

class; AUC = area under curve. 

Algorithm Train score Test score Prec 0 Prec 1 F1 0 F1 1 AUC 

GBC 1.00 0.86 0.87 0.67 0.89 0.62 0.79 

ETC 1.00 0.90 0.91 0.83 0.93 0.76 0.95 

RFC 0.91 0.90 0.95 0.75 0.93 0.80 0.90 

ABC 0.83 0.86 0.95 0.67 0.90 0.75 0.94 

 

Within the ground truth dataset, there is a noticeable imbalance between the negative class (66%), 

samples with nitrate concentrations below 37.5 mg/l and the positive class (34%), samples with nitrate 

concentration above 37.5 mg/l. It is therefore necessary to analyse each class separately.  

The F1 scores were higher for the negative class (ranging from 0.89 to 0.93) than for the positive class 

(ranging from 0.62 to 0.80), indicating better detection of non-contaminated cases. Both RFC and ETC 

outperformed GBC and ABC across these metrics. The Area Under the Receiver Operating 

Characteristic curve (AUC) is a single value that summarizes the performance of a binary classifier. It 
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represents the probability that the model will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. AUC values range from 0.5 to 1.0, where 0.5 indicates random 

guessing and 1.0 indicates perfect classification. In this case, results ranged from 0.79 for GBC, to 0.94 

for ABC.  

The RFC model was selected to apply recursive feature elimination to identify which explanatory 

variables contribute most significantly to predictions. Figure 26 suggests that RFC relies mostly on 

variables such as sand/clay content, distance to permanent surface water (alluvial sediments), NDVI, 

and distance to irrigated plots. In the case of sand and clay content, this can be explained by the fact 

that the central areas of the basin (detrital aquifers) are comparatively more contaminated than the 

remainder of the study area. The exception to this rule is the alluvial sediments that occur along 

permanent water courses. This is also consistent with variable importances and can be attributed to 

the fact that these sediments are highly permeable, which means that contamination is flushed off 

quickly every season. The correlation between contamination and predictors such as landforms, slope, 

and land use, is typically low.    

 

Figure 26. (Normalised) Feature importance in the Random Forest classifier obtained by applying Recursive 

Feature Elimination. 

 

East Anglia basin 

In the case of East Anglia, groundwater contamination was mapped based on explanatory variables 

such as land use, landforms, lithology, and precipitation. Tree-based algorithms outperformed other 

algorithm families. The test scores and area under the receiver operator characteristic curve scores 

for RF and ET are around 0.90. 
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The predictive performance of the classification algorithms is shown in Table 10, which lists the main 

metrics obtained by the ensemble tree-based algorithms applied. The outcomes indicate a high 

predictive capability of the four models. The test scores all exceed 0.83, with three of the algorithms 

(RFC, ABC and GBC) achieving a score above 0.89, indicating a significant predictive accuracy. The 

analysis of the F1-score indicates that the algorithms are effective in predicting both classes, as 

evidenced by the F1-score values for the 1 (contaminated) and 0 (not contaminated) categories that 

consistently exceed 0.8, with a maximum value of 0.96 observed for GBC. The AUC values, ranging 

from 0.96 to 1 for all models, demonstrate a high predictive performance, as these values represent 

the upper end of the spectrum of predictive performance with classification models. 

Table 10. Summary of machine learning metrics for the tree-based ensemble models in the East Anglian chalk 

aquifer. Performance metrics: Train score = optimised training score; Test score = optimised test score; Prec 0 = 

precision negative class; Prec 1 = precision positive class; Rec 0 = recall negative class; Rec 1 = recall positive class; 

F1 0 = F1 score negative class; F1 1 = F1 score positive class; AUC = area under curve. 

Algorithm 
Train 
score 

Test 
score 

Prec 0 Prec 1 Rec 0 Rec 1 F1 0 F1 1 AUC 

RFC 0.98 0.91 0.86 1.00 1.00 0.83 0.92 0.90 0.99 

ABC 0.99 0.89 0.85 0.95 0.96 0.83 0.90 0.88 0.97 

GBC 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 

ETC 0.97 0.83 0.77 0.94 0.96 0.70 0.85 0.80 0.96 

 

Figure 27 illustrates the mean probability predicted by the four algorithms to exceed the 50 mg/L 

threshold. The highest probabilities are found in the western part of the chalk aquifer extension, 

where these materials outcrop at the surface. In the central areas, the aquifer materials are confined 

by quaternary materials, which provide some protection from sources of surface nitrate 

contamination. In the eastern band, streams erode quaternary materials and allow chalk to reach the 

surface again, increasing the likelihood of exceeding the nitrate contamination threshold. In general, 

most contaminated and uncontaminated points can be correctly identified by the algorithms, even in 

regions where these points are near each other. This is the case of two points (one contaminated and 

one uncontaminated) shown in Figure 27, where we can see how the algorithms offer a higher 

probability around the contaminated point than in the area corresponding to the other borehole. 

Figure 28 provides a more comprehensive understanding of the factors that, according to the ET 

algorithms, control nitrate pollution in the test boreholes. Figure 28a presents a bee swarm plot 

obtained with the SHapley Additive exPlanations (SHAP) technique (Nohara et al., 2022). SHAP 

analyses facilitate the identification of the most important variables (from top to bottom in order of 

importance), as well as the identification of the values of these variables that have a positive impact 

(greater probability of contamination) or a negative impact on the prediction of nitrate content. 

In this case, buried valleys, the thickness of quaternary materials and the elevation of the base of the 

chalk aquifer rank among the most important variables. In addition, it highlights how higher values of 

the first two variables are related to a negative impact on the predictions (i.e., lower probability of 

contamination) while higher values of the base of the aquifer result in a positive impact (higher 

probability of contamination) on the predictions. Figure 28(b) and (c) present the SHAP values for a 

couple of individual pixels, those identified in Figure 27. These explain how the algorithms rely on 

different variables to explain why two boreholes that are relatively close in space may present entirely 

different outcomes in terms of nitrate contamination.  
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Figure 27. Predicted groundwater contamination from nitrate in the chalk aquifers of East Anglia. 

 

Figure 28. (a) Beeswarm plot of the SHAP Analysis obtained for the Extra Trees Classifier (ETC) model for the 

entire test data set. (b) Waterfall plot of the SHAP Analysis for the Borehole1 and (c) Borehole 2, borehole 

locations can be seen on Figure 27. 
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5.4 Discussion 
 

In the case of the Duero basin, there is a strong correlation between predictive maps and prior 

knowledge. Nitrate contamination is more prevalent in the northeastern quadrant, an area 

characterized by the presence of permeable sediments and widespread agriculture. Conversely, basin 

boundaries, made up mostly of impervious materials, are predicted to be contamination-free. Alluvial 

systems are clearly identifiable, particularly in the case of the RF and ET algorithms. These show up as 

less contaminated than the surrounding areas, which is also consistent with field experience, and 

which could be attributed to the fact that alluvial systems are typically more permeable. This implies 

that contamination washes off more quickly than in the interfluve areas.  

This interpretation is consistent with the feature importance analysis. Key variables to explain nitrate 

contamination in the Duero basin include sediment types (sand, clay, and, to a lesser extent, silt), and 

distance to permanent surface water. Agriculture-related variables such as normalized difference 

vegetation index (NDVI) and distance to agricultural areas also rank among the most important 

predictors for groundwater contamination. In contrast, digital elevation model (DEM)-derived 

variables such as topography, slope, and landforms were found to be relatively unimportant. This 

appears to be because the areas characterized by the presence of permeable materials are mostly flat, 

which means that topography-related predictors provide relatively little valuable information to the 

algorithms. 

In the case of East Anglia, the resulting map is consistent with both the conceptual groundwater model 

and field information. In particular, it adequately depicts the existence of nitrate-vulnerable areas 

along chalk aquifer outcrops. There is a marked contrast between these areas and those where the 

productive aquifers are protected by overlying impervious or semi-impervious materials. 

Furthermore, the map adequately identifies deeply incised valleys towards the eastern side of the 

basin, where the conditions are similar to the chalk outcrops.  

 

5.5 Conclusions and next steps 
 

This assessment confirms the potential of ML tools to enhance the spatial extent of groundwater 

contamination predictions across different hydrogeological settings. While the outcomes can still be 

further refined, results suggest that the algorithms are already able to depict field conditions reliably.  

The fact that each case relies on different predictors, together with the fact that the hydrogeological 

settings are significantly different, suggests that this method can be readily exported to any settings 

provided there is enough ground truth data available for training and testing the algorithms. The 

method caters to a wide variety of field conditions as the choice of predictor variables can be modified 

by the user to account for site-specific considerations. Future developments potentially include work 

with contaminants other than nitrate. This is expected to enhance our understanding of groundwater 

contamination problems across different basins. 

Because ML algorithms learn from experience, predictions must necessarily be based on a ground-

truth dataset. In this context, it should be noted that having a pre-existing borehole network is 

essential to apply MLMapper. 
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6 Quantitative groundwater resources estimation 
 

6.1 Introduction 
 

Regarding the quantitative estimation of groundwater resources, significant challenges face the Duero 

basin, challenges that may also resonate in basins like Messara and Seine. These challenges include: 

• Adapting to dynamic scenarios: Navigating through evolving scenarios involving new 

agricultural practices, changing demands, increased solar irrigation, and the effects of climate 

change. 

• Enhancing resource utilization efficiency: Improving the efficiency of resource utilization to 

meet growing demands sustainably. 

• Implementing real-time groundwater monitoring: Establishing a robust system for real-time 

monitoring of GWLs at a comprehensive scale. 

Consequently, there is a recognized imperative to refine the estimation of groundwater resources, as 

acknowledged by stakeholders in the Duero. This refinement should occur at a higher resolution than 

what current process-based models offer, encompassing both spatial considerations (e.g., sub-basin 

scale, groundwater basin scale) and temporal dimensions (e.g., weekly, biweekly, monthly). 

However, the existing process-based hydrogeological models encounter limitations in achieving these 

objectives. Challenges include the approaching computational thresholds for higher spatial resolution 

and larger ensemble scenario predictions. Additionally, these models often underperform in regions 

with limited observational data for calibration, failing to adequately capture the spatial dependence 

structure of hydrologic processes across various spatiotemporal scales. 

In response to these challenges, there is a concerted effort to explore the potential of a data-driven 

surrogate meta-model. This type of model aims to predict across diverse spatial resolutions. Similar 

methodologies have shown promise in predicting streamflow, e.g. (Arsenault et al., 2023), and water 

balance components, e.g. (Droppers et al., 2023).  

To our knowledge, the only related previous work using this type of model in the context of 

groundwater is by Seo and Lee (2021). In this study, they tested the application of LSTM and 

Convolutional LSTM (ConvLSTM) deep learning (DL) architectures to predict changes in spatiotemporal 

GWS in South Korea. To achieve this, they used gridded precipitation, temperature, soil moisture, 

NDVI and GRACE-derived TW) as inputs, but at a relatively coarse resolution (0.25°, 1 month). They 

observed that the ConvLSTM model captured spatiotemporal variations in GWS better than the LSTM 

model. 

Therefore, applying such approaches to groundwater balance components at high spatiotemporal 

resolution remains a formidable challenge. Our objective is to develop a robust DL surrogate model 

capable of reproducing spatiotemporal variations in GWS in the Duero Basin, which serves as a pilot 

site. Furthermore, the model(s) should ideally be transferable to other basins and adaptable to their 

respective data and local conditions. 
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6.2 Method 
 

Figure 29 illustrates the workflow for developing DL models to estimate groundwater storage Change 

(GWSC). The process begins by collecting static and dynamic spatiotemporal data layers that are 

directly or indirectly related to groundwater dynamics from both local and global sources (as detailed 

in Table 11). To ensure compatibility with the DL models, these input layers and the target GWSC data 

are spatially and temporally resampled and rescaled to a unified resolution. The workflow also 

incorporates a feedback loop for continuous improvement, which allows for the iterative re-selection 

and reprocessing of variables. 

 

 

Figure 29. Workflow for Deep Learning modelling of Groundwater Storage Changes (GWSC) in the Duero Basin. 

Based on current team knowledge and the literature reviewed, the envisaged surrogate model is a DL 

variant like LSTM or Convolutional LSTM (ConvLSTM) with attention (Figure 29). LSTM is a type of 

recurrent neural network specifically designed to capture long-range temporal dependencies in 

sequential data. ConvLSTM extends LSTM by replacing the fully connected operations with 

convolutional operations in the input-to-state and state-to-state transitions. This allows the model to 

capture both spatial and temporal dependencies, making it well-suited for spatiotemporal data. 

Attention mechanisms enhance LSTM or ConvLSTM by allowing the model to dynamically focus on the 

most relevant parts of the input sequence (or spatial-temporal features) during prediction. This 

improves model interpretability and performance, particularly in complex tasks involving 

heterogeneous input data. 
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On the other hand, novel architectures such as Spatiotemporal Graph Neural Networks (ST-GNN) and 

Spatiotemporal Transformer (STT) were also tested. ST-GNNs are DL models designed to capture both 

spatial and temporal dependencies in data structured as graphs. In these networks, nodes (e.g., 

locations or sensors) are connected based on spatial relationships, and graph convolutions are applied 

to extract spatial features. Temporal dynamics are modelled through recurrent units (like LSTM) or 

temporal convolutions. STTs are a class of Transformer-based models that capture spatiotemporal 

dependencies using self-attention mechanisms. Unlike recurrent neural networks or GNNs, 

transformers model global interactions across both space and time without relying on sequential 

processing. STTs can efficiently learn long-range dependencies and are particularly powerful when 

applied to gridded or multivariate spatiotemporal datasets. Their flexibility and scalability make them 

promising candidates for complex geoscientific tasks such as GWSC prediction. 

Shallow ML algorithms such as RF and Extreme Gradient Boosting (XGBoost) were also tested as 

benchmarks and to build ensembles with the DL methods.  

The model is designed to forecast GWSC at a specific spatiotemporal scale and for a predefined 

forecast period. Predictions rely on input variables such as streamflow, GWL, and discharge, in tandem 

with various gridded static and dynamic spatiotemporal inputs accessible within the STARS4Water 

metadata portal (https://stars4water.eu/stars4water-metadata-portal/). These inputs encompass, 

amongst others, static geological, geographic, hydrological, hydrogeological and socio-economic 

characteristics, such as soil composition, precipitation, evapotranspiration, soil moisture, NDVI, 

population density, water demands, and land use (Table 11). 

Presently, the Duero basin managers use groundwater balance outputs derived from a process-based 

model (Patrical, https://iiama.webs.upv.es/en/technology-transfer/software/patrical/). This data 

should serve as valuable training material for the proposed DL model. However, the simulated data is 

not free of error and uncertainty, as inferred from the discrepancies between observed and simulated 

discharge flow rates, likely resulting from coarse scales and hydrogeological assumptions.  

Given the considerable uncertainties associated with the Patrical model, its GWS simulations were 

deemed unsuitable as training data for the DL model. Instead, GWS estimates were derived by 

integrating water storage outputs from land surface models (LSMs) and hydrological models (HMs) 

with in situ GWL observations collected across the Duero Basin by the champion stakeholder, the 

Duero River Basin Authority. These water storage outputs include TWS, which is the sum of all water 

storage components considered in the model (e.g. groundwater, soil moisture, surface water, canopy 

water and snow water). A non-parametric Spearman correlation analysis was performed to assess the 

relationship between local GWLs and water storage outputs from various LSMs/HMs, as well as GRACE 

satellite data. Among the models evaluated, the Community Land Model (CLM) and the Terrestrial 

Systems Modelling Platform (TSMP) exhibited the strongest correlations with GWLs (WTDA_CHD) at 

the coarsest spatial resolutions (Figure 30). Note that WTDA are negatively correlated to Total Water 

Storage Anomalies (TWSA); Liquid Water Equivalent Anomalies (LWEA); and Runoff Water Equivalent 

(ROWE), since an increase in water table depth means a decrease in stored water. 

 

https://iiama.webs.upv.es/en/technology-transfer/software/patrical/
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Table 11. Groups of layer variables used to train the Deep Learning model for Groundwater Storage Change 

(GWSC) estimation in the Duero basin. 

 
 
Layer Type  

 
 
Properties 

 
 
Nº Vars 

Original Spatial 
Resolution 

Original 
Temporal 
Resolution  

 
 
Source 

 
 
Reference Source  

Geographic Static  2 200 m N/A Local CNIG 

Socio-economic  Static 8  Vector  
(Corine: 100m) 

N/A Local 
(Corine: 
global) 

Mirame Duero 
(Corine: land Copernicus) 

Hydrology Static 4 Vector N/A Local Mirame duero 

Hydrogeology Static 
 

6 Vector  
(Perm: 200m) 

N/A Local Mirame Duero  
(Perm: IGME) 

Soil Static 2 Vector/250m N/A Local/global Mirame Duero/soil grids 

Geology Static 1 50 m N/A Local IGME 

Vegetation Static 1 Vector N/A Local Mirame Duero 

GHS Density 
POP 

Dynamic 1 30 arcsec  
(~600 m)  

Average 
every 5 years  
2000-2025  

Global https://data.jrc.ec.europa.eu
/dataset/2ff68a52-5b5b-
4a22-8f40-c41da8332cfe 

ET (MODIS) 
 

Dynamic  2 500 m  Every 8 days  
2000-2023  

Global 
 

https://human-
settlement.emergency.coper
nicus.eu/download.php?ds=p
op  

NDVI 
Copernicus  

Dynamic 
 

1 1 km  Every 10 days 
   2015-2020  

Global 
 

https://lpdaac.usgs.gov/prod
ucts/mod16a2gfv061/   

SWI Copernicus Dynamic 4 1 km   Daily      
2015-2024  

Global 
 

https://land.copernicus.eu/e
n/products/vegetation/norm
alised-difference-vegetation-
index-v3-0-1km  

SMAP (Surface 
and Root Zone 
Soil Moisture)   

Dynamic 
 

21 9 km   Every 3 hours              
2015-2024  

Global 
 

https://land.copernicus.eu/e
n/products/soil-
moisture/daily-soil-water-
index-europe-v1-0-1km   

Agricultural and 
livestock 
demand  

Dynamic 2 Vector Monthly 
Jan.2014 to 
Dec. 2021  

Local  
https://nsidc.org/data/spl4s
mgp/versions/7   

Supply demands Dynamic 1 Vector Monthly 
Jan.2013 to 
Dec. 2022  

Local Mirame Duero 

GWL 
observations 

Dynamic 1 point Monthly Local https://www.chduero.es/red-
de-control-del-nivel 

Corrected TWS 
CLM  

Dynamic 
 

3  3 km  Monthly 
Dec. 2013 to 
Dec. 2018 

Global 
 

https://datapub.fz-
juelich.de/slts/4DHydro/ 

Corrected TWS 
TSMP 

Dynamic 1 11 km  Monthly Global https://datapub.fz-
juelich.de/slts/4DHydro/ 

 

https://human-settlement.emergency.copernicus.eu/download.php?ds=pop
https://human-settlement.emergency.copernicus.eu/download.php?ds=pop
https://human-settlement.emergency.copernicus.eu/download.php?ds=pop
https://human-settlement.emergency.copernicus.eu/download.php?ds=pop
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://lpdaac.usgs.gov/products/mod16a2gfv061/
https://land.copernicus.eu/en/products/vegetation/normalised-difference-vegetation-index-v3-0-1km
https://land.copernicus.eu/en/products/vegetation/normalised-difference-vegetation-index-v3-0-1km
https://land.copernicus.eu/en/products/vegetation/normalised-difference-vegetation-index-v3-0-1km
https://land.copernicus.eu/en/products/vegetation/normalised-difference-vegetation-index-v3-0-1km
https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-index-europe-v1-0-1km
https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-index-europe-v1-0-1km
https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-index-europe-v1-0-1km
https://land.copernicus.eu/en/products/soil-moisture/daily-soil-water-index-europe-v1-0-1km
https://nsidc.org/data/spl4smgp/versions/7
https://nsidc.org/data/spl4smgp/versions/7
https://datapub.fz-juelich.de/slts/4DHydro/
https://datapub.fz-juelich.de/slts/4DHydro/
https://datapub.fz-juelich.de/slts/4DHydro/
https://datapub.fz-juelich.de/slts/4DHydro/
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Figure 30. Spearman correlation matrix between water storage anomalies and water table depth anomalies 

(WTDA) data from different LSM/HMs and local observations (WTDA_CHD). TWSA: total water storage 

anomalies; LWEA: liquid water equivalent anomalies; ROWE: runoff water equivalent; LF: LISFLOOD. 

Based on the correlation analysis, simulated TWS data from TSMP and CLM were integrated and 

corrected using local GWL observations from the Duero River Basin monitoring network at a monthly 

timestep as a data assimilation approach to develop GWS target variables. TSMP offers long-term 

(1989-current) monthly simulations of WTD and TWS across Europe at approximately 11 km 

resolution. Moreover, daily TWS from the CLM at 3 km resolution is also available at Pan-European 

level. The integration of CLM and TSMP data was performed using geostatistical interpolation and 

linear regression, as detailed below. 

 

Correction of Community Land Model (CLM) Total Water Storage (TWS) 

Simulated TWS from CLM exhibited an overall Spearman correlation of -0.46 with observed WTD 

across the entire Duero Basin (Table 9). The correction of TWS values from CLM was based on the 

linear relationship between TWS and WTD. Since multiple observations could fall within a single 3 km 

TWS pixel, the observation well with the highest correlation with TWS in each pixel was selected, and 

a linear regression model was fitted between TWS and observed WTD. 

The regression equation was then used to estimate and correct TWS from WTD data at the pixel level, 

while an uncertainty flag variable was assigned based on the correlation coefficient (r) as follows: 

• Low uncertainty: If |r| > 0.7, corrected values were computed using the regression line. 

• Moderate uncertainty: If 0.5 < |r| < 0.7, corrected values were computed using the regression 

line. 

• High uncertainty: If |r| < 0.5 or no observation well was present in the pixel, no correction 

was applied to the CLM TWS values, and they were flagged as having "high" uncertainty. 
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Correction of Terrestrial Systems Modelling Platform (TSMP) Total Water Storage (TWS) 

Apart from TWS, the TSMP model also provides simulated WTD data. TWS and WTD from TSMP 

exhibited an overall Spearman correlation of -0.41 and 0.36 with observed WTD across the entire 

Duero Basin, respectively (Table 9).  

A more advanced correction approach was applied to the TWS data from TSMP, incorporating the 

interpolation of WTD residuals using spatiotemporal kriging. These residuals were then added to the 

average simulated WTD from TSMP (Ben-Salem et al., 2023). This interpolation method enhances the 

alignment of TSMP model outputs with observed WTD data.  

The conditioning process is expressed as follows: 

𝑊𝑇𝐷𝑇𝑆𝑀𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) = 𝑊𝑇𝐷𝑇𝑆𝑀𝑃 + ∑ 𝑤𝑖[𝑊𝑇𝐷𝑜,𝑖 − 𝑊𝑇𝐷𝑇𝑆𝑀𝑃,𝑖]
𝑁

𝑖=1
 

where WTDTSMP(corrected) is the corrected WTD from the TSMP model at each TSMP pixel, WTDTSMP are 

the simulated WTD values from TSMP, WTDo,i - WTDTSMP,i  are the residuals between observed and 

simulated WTD at and in a neighbourhood of the TSMP pixel, wi represents the weights assigned 

during the kriging interpolation process, and N is the number of nearby observations used in 

conditioning. 

After computing residuals between observed and simulated WTD values, the dataset was assigned to 

a continuous spatial grid by creating spatial bins based on the original X_CHD and Y_CHD coordinates. 

For each bin, the median values were computed to obtain a representative sample across the domain, 

ensuring a uniform spatial distribution. Next, grid cells were reassigned using the centres defined by 

X_TSMP and Y_TSMP, ensuring that every data point was mapped to a continuous spatial grid 

matching the 11 km spatial resolution of TSMP. 

A crucial aspect of this analysis is its explicit incorporation of time. An experimental variogram was 

estimated from the representative data, and several variogram models were evaluated, using the 

Python package GSTools (Müller et al., 2022). The model that yielded the highest R² score between 

the experimental variogram and the model-predicted variogram was selected as the global model.  

We then performed local kriging for each grid cell using this global model. For each cell, local data is 

selected based on spatial proximity, and ordinary kriging is applied to interpolate the residuals over 

time. The predicted residuals are added to the modelled values (WTD_TSMP) to produce a corrected 

time series. 

Finally, corrected GWS from TSMP were derived at each pixel where corrected groundwater levels 

were available: 

𝐺𝑊𝑆𝐶𝑇𝑆𝑀𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) = 𝑆𝑗 ∙ ∆𝑊𝑇𝐷𝑇𝑆𝑀𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 

where GWSCTSMP(corrected) are the corrected values of GWSC for TSMP simulations, Sj are storage 

coefficients at each pixel j, estimated as the slope of the linear regression between the time series of 

ΔTWS and ΔWTD simulated by TSMP, and WTDTSMP(corrected) are the corrected WTD values for TSMP 

obtained from the kriging through the previous equation. 

Similarly to the CLM case, uncertainty of GWSC corrections from TSMP simulations has been 

incorporated at the pixel level according to the following criteria: 
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• Low uncertainty: If (R2 > 0.7 & S < 0.3) & GWSCTSMP(corrected) estimate available, GWSCTSMP(corrected)  

assigned as target value. 

• Moderate uncertainty: If (R2 < 0.7 or S > 0.3) & WTDTSMP(corrected) estimate available, simulated 

ΔTWSTSMP  assigned as target value. 

• High uncertainty: If (R2 < 0.7 or S > 0.3) & WTDTSMP(corrected) estimate not available, simulated 

ΔTWSTSMP  assigned as target value. 

 

6.3 Results 
 

Correction of CLM Total Water Storage 

Figure 31 shows two examples of linear regressions between observed WTD in piezometers and 

simulated TWS from CLM in two groundwater bodies of the Duero basin. The strength of these linear 

regressions as measured by the correlation coefficients were then used for TWS data correction and 

uncertainty flagging, as explained in the Methods section.  

Figure 32 shows the resulting uncertainty map for the TWS from CLM across the whole Duero River 

basin and an example of corrected TWS values for December 2013. The large area of high uncertainty 

in the left map is conditioned by the large amount of CLM pixels with no intersecting observation 

wells.  

 

Correction of TSMP Total Water Storage 

The experimental semi-variogram of the residuals between observed WTD in the monitoring network 

and the simulated WTD from the TSMP model is shown in Figure 33. The stable covariance model 

(Wackernagel, 2003) presents the highest goodness-of-fit (R2=0.93) to estimate the spatial 

correlations of the residuals at different lag distances. 

This covariance model is then used as the global model to perform spatiotemporal ordinary kriging of 

the residuals at each TSMP grid cell (11 km), and the interpolated residuals are subsequently added 

to the simulated WTD from TSMP to generate the corrected time series of WTD values. A sample plot 

from one cell displaying the observed (WTD_CHD), modelled (WTD_TSMP), and corrected GWLs over 

time is shown in Figure 34. Finally, GWSC was estimated and uncertainty flagged at the pixel level, 

following the procedure described in the Methods section (Figure 29). There highest concentration of 

TSMP pixels with low uncertainty GWSC estimations are concentrated in the southern and central 

areas of the Duero basin. 
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Figure 31. Linear regression lines between total water storage (TWS) from the CLM model, in mm, and local water 

table depth observations (WTD_CHD), in m, for different observation wells (piezometers) in (a) a shallow 

groundwater body, namely Raña del Orbigo, and (b) a deep groundwater body, namely Valle de Amblès, within 

the Duero River Basin.  
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Figure 32. Left: Uncertainty map based on the correlation between observed WTD and TWS values from CLM. 

Right: Corrected TWS values from CLM for December 2013, derived using local WTD observations following the 

approach described in the Method section. 

 

Figure 33. Experimental variogram alongside fitted covariance models with their R2 values, for spatiotemporal 

kriging of the residuals between observed (WTD_CHD) and simulated (WTD_TSMP) water table depth. 
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Figure 34. Sample plot of the observed (WTD_CHD), simulated (WTD_TSMP) and corrected time series of water 

table depth (m) through spatiotemporal kriging in one TSMP grid cell. 

 

 

Figure 35. Map of uncertainty in groundwater storage change (GWSC) estimations at the 11 km TSMP pixels of 

the Duero basin. Open circles are used to identify pixels with available correct water table depth (WTD) data. 

 

Best performing models 

Among the tested DL architectures for spatiotemporal groundwater resources estimation, STT has 

emerged as the most promising surrogate. We implemented a STT to estimate GWSC across space and 

time.  

The modelling system processes 120 months of geospatial data from 2013 to 2022, integrating 

dynamic environmental features such as precipitation, evapotranspiration, and temperature with 

static landscape characteristics including land use patterns, soil properties, and geological features 
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(Table 11). In a first approach, to ensure the forecasting capabilities of the models for future scenarios, 

only those dynamic features that are available from different climate change scenario datasets have 

been included: precipitation, potential evapotranspiration and maximum temperature. 

The core of the system is a STT neural network that uses self-attention mechanisms to capture 

complex spatial and temporal dependencies in the data, taking 48 months of historical observations 

to forecast the next 12 months of groundwater conditions. The STT model employs multi-head self-

attention layers with residual connections and positional encoding to capture both spatial and 

temporal patterns in the data. 

The training pipeline begins with sophisticated data preprocessing that handles irregular spatial 

sampling within the Duero basin boundary, applies robust normalization techniques including power 

transform for negative GWSC values, and incorporates uncertainty estimates from CLM and TSMP 

corrections to weight sample importance. The system employs automated hyperparameter 

optimization using spatial k-fold cross-validation, systematically exploring configurations for the 

transformer architecture including hidden dimensions (128-384), attention heads (4-12), and network 

depth (2-6 layers). Training incorporates advanced techniques such as learning rate scheduling, 

gradient clipping, early stopping, and a custom loss function that combines mean squared error with 

mean absolute error weighted by data uncertainty. 

Uncertainty derived from TWS corrections is both an input feature (so the STT can adapt its attention) 

and a weight in the loss (so unreliable samples contribute less to training). This two-pronged approach 

addresses uncertainty at the representation level and the optimisation level. 

In the following, we present the results for GWSC prediction of the TSMP data. Beyond the primary 

STT model, we implement a complementary XGBoost ensemble for comparison and create an 

optimally weighted hybrid model that combines predictions from both approaches. A summary of 

model performance for each model is presented in Table 12. 

Table 12. Model performance across each model: optimised SpatioTemporal Transformer (STT), XGBoost; and 

STT-XGBoost ensemble; for the train, validation (val.) and test data. Metrics include Mean Square Error (MSE), 

Mean Absolute Error (MAE) and R2. 

Model STT XGBoost STT-XGBoost ensemble 

Train Val. Test Train Val. Test Train Val. Test 

MSE 0.0015 0.0021 0.0027 0.0000 0.0028 0.0029 0.0010  0.0021  0.0027 

MAE 0.0223 0.0278 0.0333 0.0048 0.0335 0.0363 0.0184 0.0282 0.0332 

R2 0.0333 0.4479 0.3847 0.9878 0.2887 0.3418 0.7445 0.4589 0.4021 

 

Figure 36 shows the smoothed training and validation loss curves of the final STT, tuned over and 

optimization process with 3-folds spatial cross-validation and 30 trials. The temporal data split was set 

as follows: months 0-47 (train), 48-95 (validation), 96-107 (test). The model achieved moderate but 

robust performance (Table 12). 
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Spatial goodness-of-fit maps help visualizing the spatial performance of the STT model across the 

Duero basin (Figure 37). TWS data from TSMP was only available until 2018, and only simulated WTD 

were available from 2018 to 2022; that explains the decrease in number of samples in the validation 

and test sets compared to the train set. The training set covers the entire area, ensuring sufficient 

information for the STT to learn spatiotemporal patterns in the data. The moderate spatial 

performance in the train set reflects the different regularization mechanisms used to prevent 

overfitting. The validation and test maps evidence the effect of the uncertainty layer: better results in 

areas with less uncertainty in GWSC corrections (Figure 35 and Figure 37). 

 

Figure 36. Smoothed training and validation curves of the training process of the optimised spatiotemporal 

Transformer for groundwater storage change prediction in the Duero River Basin. 

Feature importance was analysed using permutation testing. These are the top 10 important static 

features: 

1. Hydrogeological domains from the surface horizon (i.e., related to shallow unconfined 

groundwater bodies) 

2. Population-based water supply use. 

3. Maximum volume for hydroelectrical power plants. 

4. Groundwater bodies from the lower horizon (i.e., related to deeper groundwater systems 

from which most water is pumped) 

5. Lakes and reservoirs. 

6. CORINE land use 216: Heterogeneous Agricultural Areas. 

7. SoilGrids: silt content. 

8. SoilGrids: sand content. 

9. Vegetation types. 

10. Maximum volume for livestock farming. 

The features are diverse, and they are all highly connected to groundwater dynamics in the Duero 

basin. The first two features show one order of magnitude higher permutation importance than the 

rest. 

The three dynamic features (precipitation, potential evapotranspiration and maximum temperature) 

have larger average importance than the static ones, being precipitation and potential 

evapotranspiration the ones with the highest scores. 
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Figure 37. Maps of the spatial distribution of R2 values for the a) train, b) validation and c) test sets of optimised 

Spatiotemporal Transformer (STT) across the TSMP pixels in the Duero River Basin. Note the reduction in the 

number of samples from train (620) to validation (153) and test (153) due to a decrease in available simulated 

TSMP data from 2018. 
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The XGBoost model was trained as a multi-output regressor in which dynamic variables were 

summarised using statistics such as mean, standard deviation, minimum, maximum, and simple linear 

trend, and concatenated to the static features. This model also showed suitable results, but was prone 

to overfitting (Table 12). 

The STT-XGBoost ensemble based on linear weight search yielded the best metrics (Table 12). The 

performance improvement is evidenced in the validation and test spatial R² maps (Figure 38) 

compared to the STT alone (Figure 37). 

 

 

Figure 38. Maps of the spatial distribution of R2 values for the a) validation and b) test sets of spatiotemporal 

Transformer (STT) - XGBoost ensemble across the TSMP pixels in the Duero River Basin. 

 

Finally, the time series predictions of the different methods on the top pixels by R² were compared in 

Figure 39. This allows visual inspection of how well each model tracks the actual data at representative 

locations. The GWSC patterns are captured quite well, especially by the STT alone and the STT-XGBoost 

ensemble, although peaks and valleys still need to be improved. 
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Figure 39. Comparison of predicted time series at pixels with the highest accuracy (R2). For each selected location, 

the plots show the observed target series (as points/line), and the predictions from each model: STT (Transformer, 

dark blue), XGBoost (orange), Ensemble (purple) as dashed lines. 
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6.4 Discussion 
 

This chapter presents a practical and well-structured approach for producing high-resolution, 

spatiotemporal estimates of GWSC for the Duero basin. It effectively addresses the limitations of 

traditional process-based models, which are often computationally intensive and less reliable in data-

scarce regions. The core of the methodology is the development of a sophisticated data-driven 

surrogate model that combines outputs from process models like TSMP and CLM with in-situ 

groundwater observations. Through geostatistical conditioning techniques such as spatiotemporal 

kriging and linear correction, a more reliable target variable was created to train advanced machine 

learning models, primarily a STT complemented by an XGBoost baseline and a final linear STT-XGBoost 

ensemble. 

The framework’s design demonstrates several notable strengths. A key contribution is the hybrid data 

conditioning, which integrates TSMP/CLM outputs with local piezometer data to produce more 

realistic GWSC targets and a geographically explicit uncertainty flag, a practical method for fusing 

models and observations for ML training. Furthermore, the study leverages a modern STT architecture 

within a technically sound workflow that includes robust preprocessing, automated hyperparameter 

tuning via spatial k-fold cross-validation, and advanced training techniques like early stopping and 

gradient clipping. A particularly innovative aspect is the uncertainty-aware training, where uncertainty 

is handled both as an input feature and as a sample weight in the loss function, focusing the learning 

on more reliable data. This is complemented by a blending of the STT and XGBoost models, which 

improved validation and test R² values, demonstrating the complementary strengths of these different 

approaches. 

Despite these strengths, the approach has several limitations. The ML surrogate is trained on 

corrected model outputs rather than purely independent observational targets, meaning any biases 

from the correction or kriging steps could propagate into the final model and its uncertainty flags. This 

risk is compounded by spatial and temporal sampling gaps; for instance, available TSMP data ends 

earlier than the target period, reducing the number of samples for validation and testing after 2018 

and potentially leading to optimistic performance maps where training data was denser. Additionally, 

the uncertainty characterization, while pragmatic, is partial; the discrete "low/moderate/high" flags 

do not fully quantify predictive uncertainty or account for model structural uncertainty. 

To build on this promising work, several steps are recommended for future development. The pipeline 

should be extended to quantify predictive uncertainty probabilistically by producing predictive 

intervals through methods like quantile regression or deep ensembles, moving beyond the current 

discrete flags. It is also crucial to validate the correction assumptions and variogram sensitivity through 

targeted tests to ensure the kriging process introduces minimal bias. Further ablation studies and 

expanded interpretability analyses would clarify which components drive model skill, building on the 

initial permutation importance results.  

To raise confidence for operational use, transferability tests on different basins should be conducted 

to evaluate how well the learned patterns generalize. Where possible, enriching the training targets 

with additional in-situ wells or alternative observational products would reduce the reliance on 

corrected-model-only targets. For operational monitoring, a continuous update loop should be 

designed to ingest new observations and retrain the model periodically. Finally, because these outputs 

will inform water management, it is essential to accompany maps with explicit guidance where high 

uncertainty implies low decision-making confidence. Overall, this work presents a surrogate modelling 
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pathway that meaningfully fuses process models and observations, with clear steps to improve bias, 

uncertainty quantification, and operational confidence. 

 

6.5 Conclusion and next steps 
 

This section presents the framework and results for the development of DL models for GWSC 

estimation. Due to the lack of reliable GWS observations, WTD time series from the TSMP simulation 

model were corrected at the pixel level using local WTD observations by means of spatio-temporal 

kriging and then translated into GWSC using linear approximations of the storage coefficient, upon 

goodness-of-fit thresholds. So far, the developments show that the corrections presented in this 

section improve the representativeness of the ML model in the region by incorporating observational 

data, thereby reducing bias in GWS estimation.  

The advanced modelling framework represents a significant step forward in groundwater forecasting, 

combining state-of-the-art DL techniques with robust geospatial data processing to deliver accurate, 

interpretable predictions essential for sustainable water resource management. The system's modular 

design allows for integration with existing hydrological monitoring infrastructure while maintaining 

flexibility to incorporate additional data sources as they become available. 

The outcomes of this initiative are anticipated to yield indicators concerning GWSC and recharge, 

invaluable for effective groundwater resources management. Nevertheless, as soon as the models are 

also finalized for the CLM dataset, an open discussion with stakeholders regarding the usefulness of 

the products will be undertaken. 
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7 Conclusions 
 

In this report, a set of data-driven modelling tools are described which have been developed to help 

address the needs of the 7 STARS4Water RBHs. These tools cover a range of water resource related 

topics, including: reservoirs, agricultural water use, groundwater resources and groundwater quality. 

Several of these tools have shown promising results for applications in the RBHs, and with continued 

collaboration with the basin stakeholders have the potential to be deployed operationally to aid water 

management decisions. Generally, each tool has been applied in one or more RBH but also has the 

capacity to be extended to other regions – this will be explored further in Task 4.4. The outcomes of 

this work are summarised here. 

 

LSTM models for reservoir inflow and storage simulations 

An LSTM-based multi-task model was used to model reservoir inflows and volumes on a daily timestep 

in the Duero and Seine RBHs. For the four reservoirs in the Seine, simulations of inflow and storage 

were promising. This is in contrast to the results for the Camporredondo reservoir (Duero) which 

simulated inflow well but did not successfully simulate storage, likely due to a lack of data on reservoir 

operations and low volumes of training data overall. Various data augmentation methods were trialled 

to address this scarcity which resulted in small improvements in model performance. 

 

Ensemble tree model for reservoir storage forecasting 

A range of ensemble tree models were explored for simulating and forecasting reservoir storage on a 

monthly timestep in the East Anglia and Duero RBHs. Results for storage simulations were good at 1 

and 3 month lead times for the majority of reservoirs, with a multi-reservoir model outperforming 

single-reservoir models in most cases. The multi-reservoir model was also shown to have skill in 

forecast mode for reservoirs in the UK when run with an ensemble of meteorological forecasts. Future 

steps include a spatial expansion of the model to other regions, and further analysis of forecast 

outputs with an aim to produce operational forecasts for reservoir storage. 

 

Estimation of water table depth anomalies 

Monthly WTDA were estimated by downscaling GRACE satellite data in the Seine River Basin using RF 

and LSTM models. Model outputs were evaluated against TSMP simulations and in-situ groundwater 

observations. The models were shown to successfully emulate the TSMP simulations, thus 

downscaling global satellite data in a computationally efficient manner, though limitations were 

evident in areas influenced by coastal processes and karst systems where global datasets lack 

sufficient resolution. Model performance was varied when compared to in-situ observations, 

emphasising the need for hybrid approaches that integrate local hydrogeological data with global 

datasets to enhance accuracy. 

 

 

Agricultural water use 
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A RF model was built to estimate irrigated area at 1 km spatial resolution in the Rhine basin, as a first 

step to quantify the impacts of climate change on agricultural water use. High resolution true-colour 

and thermal imagery from the Landsat 7 and 8 satellites was used to estimate irrigated area, with the 

results evaluated against Eurostat statistics at NUTS level 2. The model results align well with 

subnational statistics, although it performs better in regions with larger agricultural holdings, and as 

such is a suitable method for estimating irrigated area which can then be used to calculate agricultural 

water demand. 

 

Predictive mapping of groundwater quality 

Various ensemble tree algorithms, implemented through the MLMapper tool, were used to produce 

predictive maps for nitrate contamination in groundwater for the Duero and East Anglia RBHs. The 

models performed well when compared to observed data and to prior knowledge. Explainable ML 

techniques were used to further investigate the models and demonstrated that the models are 

consistent with conceptual models of groundwater contamination. This method can help water users 

to better understand groundwater contamination in different boreholes, as well as in deciding where 

to site new monitoring boreholes. It can be expanded to new areas and other contaminants, provided 

there is sufficient data available to train and test the algorithms. 

 

Quantitative groundwater resources estimation 

A modelling framework was developed to estimate GWSC at fine spatiotemporal scales, and applied 

to the Duero basin. This framework includes hybrid data conditioning, used to integrate model outputs 

from TSMP and CLM with local GWL data, to create more realistic GWS targets and a geographically 

explicit uncertainty flag. The improved data is then used to train DL models, including the uncertainty 

information, which allows the model to focus the learning on more reliable data. These models 

produce accurate, interpretable predictions essential for sustainable water resource management, as 

required by basin stakeholders. This framework maintains flexibility, thus allowing transfer to other 

basins, and the ability to incorporate additional data sources as they become available. 

 

Overview 

Overall, multiple new data-driven tools have been developed and tested in the STARS4Water RBHs to 

address a range of water related topics. Each of these tools seeks to provide new model functionality, 

leveraging the capabilities of data-driven models to support water resource management and improve 

our understanding of the issues. The results of this work underscore ML's growing role as a 

complementary tool in hydrological sciences, capable of bridging the gap between large-scale datasets 

and local water management needs. These models and their applications can be used to support the 

STARS4Water stakeholders and the wider water community, as they strive for adaptive, resilient and 

sustainable management of freshwater resources.  
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Appendix A: Monitoring Embalsa Camporredondo using Planet 

Fusion 
 

Background 
Work Package 3 of the STARS4Water Horizon Europe project is developing methods to support water 

resources management and climate change mitigation. The methods make use of global datasets 

including satellite imagery. One of the initiatives is to use satellite imagery for reservoir monitoring.  

For many reservoirs around the globe, historical and real-time storage measurement data are readily 

available from the reservoir operator. The water level is easily measured by a staff gauge or float. The 

storage volume follows from the Stage-Storage Relationship (Depth-Volume-Area). However, there 

are cases where such data is not available, for example when the data is considered proprietary to the 

reservoir management organization, or undisclosed for other reasons (e.g. transboundary rivers). In 

such cases, a monitoring service based on remotely sensed data may be a solution. Good results have 

been achieved by combining Sentinel-2 and other publicly available optical imagery (Baup et al., 2014; 

Du et al., 2016; Gourgouletis et al., 2022; Lin et al., 2020; Zhang et al., 2021). However, as these studies 

are based on public satellite data, they are limited by the resolution and revisit time of public missions, 

which is 10 m and once every three days in the case of Sentinel-2. For small reservoirs, reservoirs with 

steep slopes and for regions that are often covered by clouds, this can lead to uncertainty. In such 

cases, commercial satellite missions that provide higher resolution data and higher revisit times may 

be a solution. Specifically, the PlanetScope constellation of 100+ CubeSats in low earth orbits 

represents a novel observational resource, with unprecedented spatial and temporal resolution.  

Within STARS4Water, we are conducting a pilot to investigate the added value of Planet commercial 

satellite data for reservoir surface area monitoring. In a second step, we explore methods to translate 

reservoir area into storage volume if the Stage-Storage Relationship is not known. Finally, we 

investigate how the satellite-based reservoir data can be linked to hydrologic catchment modelling to 

generate derived data that goes beyond the storage monitoring and offers additional benefits to water 

resources management.   

Method  
We adopt the method that is followed by earlier studies, employing the Normalized Difference Water 

Index (NDWI) to detect surface water. Finding the optimal NDWI threshold value between water and 

non-water pixels is the main challenge. The thresholding method of Prewitt and Mendelsohn (2006) 

has yielded the best results so far. The NDWI histogram is smoothed until it has two local maxima and 

the optimal threshold is identified as the minimum value between them. The method was 

implemented operationally by Donchyts et al (2022). This application is known as Global Water Watch 

(https://www.globalwaterwatch.earth/).  

For the first pilot, we have selected the Camporredondo reservoir in the Duero basin in Spain, which 

is one of the STARS4Water focus basins. For this reservoir, daily storage and outflow measurement 

data are available from October 2014 until June 2023 (CEDEX, 2024). The inflow data can be derived 

from the changes in storage and daily outflow data (Figure 40).  
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Figure 40. Inflow time series for Camporredondo reservoir, derived from in situ volume and outflow data. 

 The reservoir surface area measurements were obtained from two sources:   

- Global Water Watch, derived from Sentinel-2 and LandSat satellite imagery 

(https://www.globalwaterwatch.earth/)  

- Planet Fusion data, a merged product from PlanetScope and public satellite imagery  

Planet has developed a methodology called CubeSat-Enabled Spatio-Temporal Enhancement Method 

(CESTEM) to enhance, harmonize, inter-calibrate, and fuse cross-sensor data streams (Houborg & 

McCabe, 2018; Houborg & McCabe, 2018). CESTEM merges publicly accessible multispectral satellites 

(i.e. Sentinel, Landsat, MODIS) with the higher spatial and temporal resolution data provided by 

Planet’s PlanetScope imagery. The result is a next generation, analysis ready, harmonized Level-3 data 

product (i.e. maximum amount of available data), which delivers a clean (i.e. free from clouds and 

shadows), gap-filled (i.e., daily, 3 m), temporally consistent, and radiometrically accurate surface 

reflectance data product.  

Results  
Figure 41 shows the detected surface water occurrence of Camporredondo reservoir, derived from 

Planet Fusion data between January 2022 and July 2023. The deepest parts of the reservoir are near 

the outlet in the south. The shallower parts in the east and west fall dry more often.   
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Figure 41. Surface water occurrence in Camporredondo reservoir from Planet Fusion imagery between January 

2022 and July 2023. 

Figure 42 shows the time series of earth observation-observation (EO)-derived surface area compared 

to the in-situ storage data. The uncertainty bands in the Planet Fusion graph are based on the per-

pixel uncertainty of water detection. The WaterWatch time series is clearly more sparse than that of 

PlanetFusion.  

 

  

Figure 42. Reservoir surface area, derived from Planet Fusion (top), WaterWatch (middle) and reservoir storage 

volume from continuous in situ measurements (bottom), between January 2022 and July 2023. 
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The Stage-Storage Relationship, as derived from the EO-based surface areas and in situ storage data 

is shown in Figure 43. The Pearson correlation coefficient is 0.92 for the Global Water Watch data. The 

Planet Fusion correlation is 0.97. From the number of points, it is clear that Planet Fusion yields far 

more observations than Global Water Watch. This is related to the higher revisit time of the 

PlanetScope satellites.  

 

Figure 43. Relationship between estimated reservoir surface area, as derived from Planet Fusion and Global 

Water Watch, and reservoir storage volume from in situ measurements. The R value, correlation coefficient, is 

provided for each estimation method. 

Interestingly, the deviations from the Stage-Storage Relationship for Global Water Watch tend to be 

on the positive side, while the Planet Fusion deviations are mostly negative. In other words, Global 

Water Watch tends to overestimate the surface area, whilst Planet Fusion tends to underestimate it. 

Further analysis revealed that the overestimation within the WaterWatch method is a result of hazy 

imagery. As a result, the edges of the reservoir lake are blurred, eventually leading to shoreline pixels 

being counted as water pixels (Figure 44). The underestimation observed in the Planet Fusion method 

is due to partly cloudy images that were not filtered out. This results in water pixels not being 

recognized as water.  
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Figure 44. Global Water Watch blurred image (right hand side), which leads to an overestimation of reservoir 

surface area. 

Conclusion and next steps  
The proof of concept has shown that satellite imagery can be used for Camporredondo reservoir 

surface area monitoring. The Global Water Watch implementation produces reasonable results, but 

the higher revisit of PlanetScope leads to an improvement of the Planet Fusion product in terms of a 

more continuous and consistent signal. Both Global Water Watch and Planet Fusion still contain a few 

occasional errors and the algorithms can still be optimised further, but the overall performance is 

considered sufficient for near real time monitoring of reservoir storage (with some uncertainty 

bounds).  

The reservoir surface area can be converted into a reservoir volume by using historical inflow and 

outflow measurement data. For Camporredondo, these data are available. For other reservoirs, they 

may not. This will be one of the follow-up investigations. The stage-storage relationship of the 

reservoir could be derived from a high-resolution digital elevation model or from Sentinel-3 altimetry 

data. This would enable global reservoir monitoring without any need for in situ calibration data. 

Another follow-up activity is to employ the storage data in hydrological modelling.  
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Appendix B: Predicting reservoir storage using ensemble-tree 

models 
 

The following steps are employed to build the reservoir-specific models: 

- Data selection: daily storage data for each reservoir were sourced from the public streamflow 

database (CEDEX, 2024) (these were resampled from daily to monthly timesteps), along with 

monthly precipitation and mean temperature. This data was split into training (initial 80% of 

the timeseries) and testing data (final 20% of the timeseries). 

- Feature engineering: lagged features (i.e. feature values at an earlier timestep) were created 

from the monthly time series (reservoir storage up to a year, meteorological variables for the 

preceding 6 months), and averaged features (mean reservoir storage for a given month, mean 

precipitation and temperature for the previous 3, 6 and 12 months). Month of the year was 

converted to a cyclic feature (using sine and cosine functions). 

- Model selection: a range of ensemble-tree models were applied, with the best performing 

models for each reservoir taken forward. The models trialled were: Ada Boost Regressor; 

Bagging Regressor; Random Forest Regressor; Extra Trees Regressor; and Gradient Boosting 

Regressor, all implemented through the Scikit-learn Python package (Pedregosa F. et al., 

2011). For each reservoir, the Extra Trees Regressor (ET) was selected based on training and 

testing scores. 

- Feature selection: for each model, the most significant features were taken forward, as 

determined using the feature importance property of the model. Various thresholds for 

importance were explored, and the one that gave the greatest improvement in model 

performance was chosen to determine which features were “significant” enough to keep. 

- Hyperparameter tuning: a random search method was used to select the hyperparameters 

which give the best model performance while minimising overfitting. Hyperparameters that 

were varied include: number of estimators (trees); maximum number of features considered 

at each split; maximum depth of trees; minimum number of samples per split; minimum 

number of samples per leaf; and whether or not bootstrapping is used. 

- Prediction and evaluation: the model was used to predict reservoir storage at 1 and 3 month 

lead times, using a recursive approach for multi-step prediction. An ARIMA model was used 

as a baseline for model comparison, built using the same selected features as the ET models 

using the statsmodels Python module (Seabold & Perktold, 2010). The structure is 

ARIMA(1,0,1)(2,1,0)12 as determined by the auto_arima function in the pmdarima Python 

library. 

The following steps are employed to build the multi-reservoir model: 

- Data selection: monthly reservoir storage, precipitation, and mean temperature were 

sourced as in the individual models, with reservoir characteristics and additional timeseries 

from the UK (NRFA, 2022). Catchment characteristics were sourced from the Caravan and 

CAMELS datasets (Kratzert et al., 2023; Delaigue et al., 2024). The timeseries data for each 

reservoir do not have identical start and end dates, so the data was split into training and 

testing sets by taking the initial 75% of the total time period as training data and the final 25% 

as testing data (i.e. all data points prior to May 2010 are in the training set, and all points after 

May 2010 are in the test set). This was done to ensure no data leakage from the testing to the 

training set. Since there is more data available later in the time period, this leads to a balance 
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of 67% of data points in the training data (and 33% in the testing). This split was chosen so 

that some reservoirs were solely in the testing period which allowed us to evaluate model 

performance on entirely unseen reservoirs. 

- Feature engineering: lagged and averaged variables for reservoir storage and meteorological 

variables were used as in the individual models, but with storage converted to a percentage 

of total capacity so that the target variable is more consistent across the different reservoirs. 

Reservoir and catchment characteristics are also used, as detailed in Table 4. Categorical 

variables were One-Hot encoded. 

- Model selection: Multiple model types were not explored for the global model to reduce 

computational effort, instead the Extra Trees Regressor was chosen based on the results of 

the model selection process for the individual reservoirs.  

- Feature selection: a process of feature elimination was used here. Each feature was removed 

in turn and the model retrained, then the model performance was compared to the 

performance with all the features included for each reservoir. This demonstrated that, for 

many features, model skill across the reservoirs improved if that feature was removed (change 

in model skill was calculated as Δ𝑠𝑘𝑖𝑙𝑙  =  
𝑁𝑆𝐸𝑑𝑟𝑜𝑝−𝑁𝑆𝐸𝑎𝑙𝑙

𝑁𝑆𝐸𝑜𝑝𝑡−𝑁𝑆𝐸𝑎𝑙𝑙
, where NSE is the Nash-Sutcliffe 

efficiency metric, for model simulations with one feature removed (drop), all the features (all), 

and optimum NSE (opt) which is equal to 1). Using different thresholds for median change in 

model skill, features were removed until optimum median model performance across all the 

reservoirs was reached.  

- Hyperparameter tuning: a random search method was used to produce hyperparameter sets 

(including all the hyperparameters tuned for the individual models), the hyperparameters that 

gave the best median model performance across all the reservoirs were selected. 

- Prediction and evaluation: simulations of reservoir storage at 1 and 3 months lead time were 

evaluated on the training data using the NSE metric, and compared to the individual models 

where available (for this, the evaluation period was cropped to match that of the individual 

models). 

 


